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ABSTRACT

The purpose of the present dissertation is to study the e¤ect of the informa-

tional e¢ ciency in the �nancial markets. As it is well known, the e¢ cient market

hypothesis (EMH) has been the central proposition in �nance in the last 30 years.

This hypothesis establishes that in an e¢ cient market, the prices always fully

re�ect all the available information. However, behavioral economics and some em-

pirical evidence challenge this hypothesis, sometimes rejecting it. In this study we

highlight that �nancial markets are basically e¢ cient, however they present long

periods of ine¢ ciency.

In the �rst chapter we present a de�nition of the EMH realizing a brief dis-

cussion about this hypothesis. In the second chapter we introduce a measure of

the informational e¢ ciency based on the symbolic dynamics and the Shannon en-

tropy. The intuition is simply, if after symbolization the dynamic of the returns is

recovered, then it is possible to apply the Shannon entropy in orden to measure

the quantity of embodied information. We applied this measure to some US stock

prices and test if randomness is an appropriated hypothesis for the asset returns.

However, we �nd that at a daily frequency they are not completely e¢ cient. Even

though we ruled out the autocorrelation in the returns, the residuals suggest the

existence of nonlinearity. Many proofs are realized to the statistic, we obtain the

simulated distribution of the measure, and under certain assumptions we derive



the approximated distribution of the statistics for a small size sample. The power

and size experiments suggest that the test is able to detect many di¤erent forms of

nonlinearity, in particular it is able to detect the Non Linear Sign Model process

when the BDS test cannot.

In the third chapter we study the di¤erence in the informational e¢ ciency levels

between emerging and developed markets. We apply the measure introduced in

the previous chapter based on symbolic time series analysis and Shannon entropy,

in order to measure and rank the informational e¢ ciency of 20 stock markets from

July 1, 1997 to December 14, 2007. The results suggest that three Asian markets

take the �rst position as the most e¢ cient (Taiwan, Japan and Singapore). The

last positions are taken by the ex-socialist countries, the most ine¢ cient markets.

This latter result could be due to the limited experience of these markets. In the

fourth chapter, the evolution of the daily informational e¢ ciency is measured for

di¤erent stock market indices (Japanese, Malaysian, Russian, Mexican, and the US

markets) by using the local entropy and the symbolic time series analysis. There

is some evidence that for di¤erent stock markets, the probability of having a crash

increases as the informational e¢ ciency decreases. Further results suggest that this

probability also increases for switching to a less e¢ cient market. In addition, the

US stock market seems to be the most structurally e¢ cient and the Russian is the

most ine¢ cient, perhaps because it is a young market, only established in 1995.

This seems to con�rm the results obtained in chapter three. The �fth chapter

tries to study the informational e¢ ciency across a �nancial market. It introduces

v



a new methodology to construct Minimal Spanning Trees (MST) and Hierarchical

Trees (HT) using information provided by more than one variable. The method

is applied to the US and the Italian market and it detects clusters of companies

belonging to the same branch of the economy. This fact provides some evidence

of informational e¢ ciency in the market, since the news arrivals in one company

a¤ect also the movements in the related companies. In addition, some Monte Carlo

simulations of random markets suggest that the obtained trees are signi�cant.

vi
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CHAPTER 1

Introduction

For more than twenty years the E¢ cient Market Hypothesis (EMH) has been

the central proposition in Finance. It states that security prices in �nancial markets

must equal the fundamental values, either because all investors are rational or

because arbitrage eliminates pricing anomalies. Fama (1970) de�ned an e¢ cient

�nancial market as one in which security prices always fully re�ect all available

information. Even more, in 1978, Michael Jensen, a Chicago graduate and one of

the creators of the EMH declared that there is no other proposition in economics

which has more solid empirical evidence supporting it than the EMH (Jensen

1978, p. 95). The EMH in its weakly version, establishes that the best prediction

of future prices we can make, is to use the present prices. Considering the latter

proposition many authors have used the random walk as a stochastic model for

asset prices.

Even though that hypothesis has many fundaments, it seems that markets

sometimes behave in a ine¢ cient way. The latter is more frequent when we consider

stock markets in less developed countries. Actually, emerging markets would be

less e¢ cient than developed markets. Another reason to have ine¢ ciency is the

existence of anomalies in the stock markets; see Singal (2004) who reviews a series

of anomalies in �nancial markets. On the other hand, recently the behavioral

�nance challenges EMH refuting the hypothesis that investors are fully rational.
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In fact, behavioral �nance proposes that agents in the market act on the basis of

sentiments.

In the present dissertation my main hypothesis is that �nancial markets are

not always e¢ cient and we can measure the level of e¢ ciency. Nowadays there are

basically two positions about the e¢ cieny of market. On the one hand, we �nd the

old tradition supporting the EMH, on the other hand the behavioral �nance rejects

EMH. We try to highlight that sometimes the market is e¢ cient and sometimes

it does not. It means, in a market we can observe long periods of e¢ ciency and

other periods of high ine¢ ciency. This has been present in the history of the stock

makets, from the famous tulip mania in the 17th century, until the more recent

bubbles in the technological and real state sectors.

Even more, it is possible to detect and analyze the e¤ects of di¤erent levels of

e¢ ciency on the economy. For example, a measure of the informational e¢ ciency

can be useful for studying its e¤ects in the crash of the stock markets and on

monetary policy, or in measuring the e¢ ciency of di¤erent markets throughout

the world by analyzing the causes of their di¤erent levels of e¢ ciency.

As an introduction, the next chapter presents brie�y the E¢ ciency Market

Hypothesis (EMH). Since the chapter is introductory, its aim is to de�ne the main

concepts in order to understand the next chapters. However, some references are

given for who ever may want to study in-depth the topic. In the chapter the

de�nition of the EMH is introduced, the fundaments of the hypothesis given and

the challenges to the hypothesis also are provided. Once informational e¢ ciency
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is de�ned, the second chapter develops a measure of informational e¢ ciency based

on the concepts of symbolic dynamics and entropy. Actually, this chapter is quite

methodological. The symbolic analysis is introduced, and the entropy is de�ned.

The latter is basically the measure of e¢ ciency that will be used in part of the

dissertation. The measure is also used as a test of randomness, being able to

detect nonlinearity in time series. The measure is applied to some US stock prices

and indices1, showing that they are not completely e¢ cient if a daily frequency

is considered. In chapter three, the hypothesis that the emergent markets are

more ine¢ cient than the developed markets is analyzed. The introduced measure

is applied to di¤erent stock markets, and a kind of ranking is constructed for them.

In particular, it will be studied if, in the last ten years, the new capitalist countries

(having the youngest and least experienced stock markets) have achieved levels of

e¢ ciency comparable with those of the western European countries.

The fourth chapter will measure the e¤ects of the e¢ ciency in crash events

for di¤erent stock markets, a further result will show that undeveloped countries

have less e¢ cient markets than the developed countries. The levels of e¢ ciency

are measured for di¤erent time-windows, obtaining time series which show that

e¢ ciency is not constant through the time. For example, if the market is developing

a bubble, there is a short-run trend which will be detected by the measure. The

question here is: Is it possible to say something about the probability of developing

a crash given that we know the levels of e¢ ciency?.

1 It is supposed that the US Stock Markets are the most e¢ cient in the world. Therefore, the
EMH should take place here more than elsewhere.
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In chapter �ve the structure of stock markets is analyzed (in particular, the

U.S. and the Italian stock markets). To this end a new methodology is designed,

based on symbolic analysis and graph theory (especially, the Minimal Spanning

Tree (MST) and the Hierarchical Tree (HT) are applied). The hypothesis here is

that, if there are News about a particular branch of the economy and the market

is e¢ cient, all the �rms within that branch should move in the same direction,

at the same time. Therefore, the structure of the stock market should exhibit

clusters or groups of �rms, all a¤ected by the same information. In particular,

the methodology developed is able to consider information from asset returns and

volume trading, showing the structure of the �nancial markets in a graphical way.



CHAPTER 2

The E¢ cient Market Hypothesis

The E¢ cient Market Hypothesis (EMH) states that the securities prices in

the �nancial markets must equal the fundamental values, either because all in-

vestors are rational or because arbitrage eliminates pricing anomalies. According

to Shleifer (2000), the University of Chicago coined the term, becoming the central

proposition in �nance for nearly thirty years. As said above, Jensen (1978) even

declared that there is no other proposition in economics having more solid empiri-

cal evidence supporting it than the EMH. Fama (1965) considered that an e¢ cient

market is characterized by a large number of rational pro�t-maximizers actively

competing among them to try to predict future market values of assets, and the

important current information, is almost freely available to all participants. As

consequence of these actors interacting, actual prices of individuals securities al-

ready re�ect the e¤ects of information, being thus a good predictor of future prices.

Samuelson (1965) proposed a mathematical proof about the EMH. He said that

the asset prices in an e¢ cient market should �uctuate randomly through time in

response to the unanticipated components of news. Actually, Samuelson (1965)

and Mandelbrot (1966) proved some of the earliest theorems showing how, in com-

petitive markets with rational risk-neutral investors, the returns are unpredictable

and prices follow random walks. Fama (1970) asserts the EMH is thus �rst and

foremost a consequence of equilibrium in competitive markets with fully rational
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investors.

2.1 The Three Versions of the EMH

As prices should re�ect all available information, there exist three versions of

the EMH, and they depend on what is considered as "all available information".

In fact, Fama (1970) distinguishes three types of EMH: the weak, semi-strong, and

strong forms.

1) The weak form a¢ rms that the stock prices already re�ect all the informa-

tion derived by examining historical prices and trading volumes. Therefore, past

prices are useless and they do not add more information in order to predict future

prices. This form considers the random walk as a good model for stock prices.

This idea is diametrically opposed to the belief of chartists or technical ana-

lysts, whose views imply a sluggish response by prices to changes in the underlying

"fundamental" so that any change in trend can be identi�ed by the price tracing

out one of the patterns.

2) The semi-strong form asserts that all the publicly accessible information

about a �rm is re�ected in its stock prices. Such information includes, in addition

to past prices, �rms information such as patents held, balance sheet composition,

accounting practices, earning predictions, and so on. This version rules out the

possibility of stock prices being undervalued or overvalued. If investors were to

have access to such information from publicly available sources, one would expect

it to be in the prices. This form of EMH challenges the fundamental analysts

which are an important group among the Wall Street �nancial analysts.
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3) The strong form a¢ rms that all the information relevant to the �rm is

considered, even information only obtainable by company insiders. This is an

extreme version, and the consequence here is that even insider information is useless

in order to predict prices because it is already included in actual prices.

The basic theoretical case for the EMH rests on three arguments which rely on

progressively weaker assumptions. First, investors are assumed to be rational and

hence to value securities rationally. Second, to the extent that some investors are

not rational, their trades are random and therefore cancel each other out without

a¤ecting prices. Third, to the extent that investors are irrational in similar ways,

they are met in the market by rational arbitrageurs who eliminate their in�uence

on prices.

2.2 The EMH and the Random Walk

According to Mills (1992), the EMH is the essence of the argument according

to which changes in stock prices will be random and unpredictable (i.e. prices

follow a random walk). Therefore, considering the EMH in its weak version, many

authors have considered the Brownian motion and the random walk as satisfactory

models for �nancial variables as stock prices, the interest rate, and the exchange

rate. However, a model that is appropriated, is one in which expected returns are

constant, and where the returns sequence is uncorrelated. The model implies that
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prices follow a martingale process1, which is related to, but is rather more general

than, a random walk, and this distinction can be important in a more detailed

investigation into market e¢ ciency.

In fact, many years before the EMH was de�ned, Bachelier (1900) who had

derived the mathematical theory of Brownian Motion �ve years before Einstein,

had just proposed that stock prices follow a random walk2 process, but his work

was ignored and forgotten for years. Actually, he proposed that prices changes

are independent and identically distributed. He thought that �uctuations in prices

depended on an in�nite number of factors making impossible to aspire to mathe-

matical prediction of them. On the other hand, King (1930) concluded that stock

prices resemble accumulation of purely random changes even more strongly than

do goods prices. Working (1934) noted that time series commonly possess in many

aspects the characteristics of series of cumulated random numbers. For instance,

he asserted that wheat prices resemble a random-di¤erence series, in particular

one that might be derived by cumulating random numbers drawn from a slightly

skewed population of standard deviation varying rather systematically through

time.

1 A martingale is the mathematical model for a fair game, one in which the expected price
change (or return) is constant. The term �martingale�refers in addition to a gambling system,
originally popular in the French viallage of Martigues, in which the stake is double after each
losing bet.

2 It is believed that the term was �rst used in an exchange of correspondence appearing in
Nature in 1905 between Karl Pearson and Lord Rayleigh, which provided the answer to the
following problem: If one leaves a drunk in an empty �eld in the dead of the night and wishes to
�nd him some time later while it is still dark, what is the optimal search strategy? It is to start
exactly where the drunk had been placed and to walk in a straight line away from that point in
any direction you wish.
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2.3 Challenges to the EMH

The challenge to the EMH is two-fold; theoretical and empirical. From the

theoretical point of view, behavioral �nance focused on the issues of limited arbi-

trage and investor sentiments, see Shleifer (2000) for an introduction to behavioral

�nance. As mentioned above, the EMH can be justi�ed by the existence of rational

agents, but it is di¢ cult to argue that people in general and investors in particu-

lar, are fully rational. At the super�cial level, many investors react to irrelevant

information in forming their demand for securities. Furthermore, Black (1986),

for example, asserted that investors trade on noise rather than information. The

second line of defense considers that irrational investors may exist and trade ran-

domly, and hence their trades would cancel each other out. However according to

Shleifer (2000) the psychological evidence shows precisely that people do not devi-

ate from rationality randomly, they deviate in similar way. Schiller (1984) shows

that sometimes the noise traders behave socially and follow each others�mistakes

by listening to rumors or imitating their neighbors. Investor sentimental re�ects

the common judgment errors made by a substantial number of investors, rather

than uncorrelated random mistakes. The third line of defense maintains that even

if sentiment is correlated across unsophisticated investors, the arbitrageurs should

take other side of unsophisticated demand and bring prices back to fundamental

values. Ultimately, the theoretical case for e¢ cient markets depends on the e¤ec-

tiveness of such arbitrage. However Shleifer (2000) asserts that, in contrast to the

e¢ cient markets theory, the behavioral �nance states that real-world arbitrage is
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risky and therefore limited.

On the other hand, empirical evidence against the EMH started to appear.

Niederho¤er and Osborne (1966) discover that accurate records of stock market

ticker prices display striking properties of dependence. There is a general tendency

for price reversal between trades. Despite positive evidence for the random walk

model, Osborne (1967) a¢ rmed that non-random properties of stock prices are

primarily found in short interval data (daily and weekly) and in individual stock

prices as opposed to an average. The assumption of normality also was criticized;

Osborne (1967) plotted the density function of stock market returns, and labeled

the returns "approximately normal" since there were extra observations in the tails

of the distribution, a condition that statisticians call "kurtosis". Mandelbrot (1963)

suggested that asset returns present a type of distribution belonging to the family

of "stable paretian" distributions, which are characterized by unde�ned, or in�nite

variance. By that time Mandelbrot and Taylor (1967) recognized three schools of

thought on the statistical distribution of stock price di¤erences. First, the most

popular approach is "technical analysis" or "Chartism" mentioned above. The

other schools agree that sequences of prices describe random walks, where price

changes are statistically independent of previous price history, but these schools

disagree in their choice of the appropriate probability distributions. Some authors

found price changes to be normal or Gaussian, while the other group found them to

follow a stable Paretian law with in�nite variance. The researchers have identi�ed

more ways to successfully predict security returns. For instance, Jegadeesh and
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Titman (1993) show that movements in individual stock prices over the period of

six to twelve months tend to predict future movements in the same direction. Even

Fama (1991) admits that stock returns are predictable from past returns and that

this represents a departure from the conclusions reached in earlier studies.
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CHAPTER 3

A Measure of Informational E¢ ciency

3.1 Introduction

The main purpose of the present chapter is to introduce a measure of the in-

formation e¢ ciency, based on symbolic dynamics and information theory. This

measure can also be considered as a test of independence in time series. Recent

papers have tried to measure the informational e¢ ciency by using the Hurst ex-

ponent, see Peter (1994), (1996), Grech and Mazur (2004), Coulliard and Davison

(2005). However, the use of this measure has been criticized by some scholars, see

Bassler et al. (2006) and McCauley et al. (2007). The present chapter basically

proposes to apply the Shannon entropy after considering a symbolization of the

time series. The intuition is simple, on the one hand, symbolic analysis is useful

in detecting the very dynamics of a process when this is highly a¤ected by noise,

see Daw et al. (2003) for a review of symbolic analysis. This is the case of asset

returns, which seem to be random processes since they are a¤ected by noise, thus

a proper symbolization could help to recover the dynamics of the process. On the

other hand, Shannon Entropy has been used in Information Theory as a useful

measure of dispersion of information, see Shannon (1948) and Cover and Thomas

(1991). The idea here is that if after symbolization the dynamics of returns is

recovered, then it is possible to use the Shannon entropy in order to measure the

amount of embodied information. When the process is completely random no event
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is more frequent than another, thus the entropy is maximal. However, if there are

more frequent patterns, the entropy is low. As an extreme case of the latter, imag-

ine a stock market where the returns or prices are �xed by the government (for

instance, consider an exchange rate regime wherein the exchange rate is �xed to

certain value), then the price will be always the same and entropy equal to zero.

Even though empirical evidence is presented, the chapter is quite methodolog-

ical. It is organized as follows. In section 2 we brie�y explain what symbolic

analysis and Shannon entropy are. In section 3 we derive the simulated distribu-

tion of the statistics under the hypothesis of randomness for two symbols and an

empirical application for some US asset returns is also presented. Section 4 derives

the simulated distribution of the statistics when we consider four symbols, and

some US asset returns are tested. In Section 5 the approximated distribution for

the statistic is obtained and it is compared with the simulated distribution. Sec-

tion 6 presents some experiments in size and power for di¤erent nonlinear model

and the results are compared with the BDS test. Finally, Section 7 draws some

conclusions.

3.2 The Symbolic Analysis and The Shannon Entropy

3.2.1 Symbolic Dynamics and Symbolic Analysis Models such as ARMA(p,q)

do not have problems detecting linear dependence. When the observed dynamics

are relatively simple, such as sinusoidal periodicity, traditional analytical tools

such as Fourier transforms are easily used to characterize the patterns. More

complex dynamics, such as bifurcation and chaotic oscillation, can require more
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sophisticated approaches.

Symbolic Dynamics as remarked by Williams (2004) have evolved as a tool for

analyzing dynamical systems by discretizing spaces. In fact, Symbolic Dynamics

is a method for studying nonlinear discrete-time systems by taking a previously

codi�ed trajectory using sequence of symbols from a �nite set (alphabet). Consider

fxtgt=1t=1 is an in�nite sequence of continuous variables belonging to R; selecting

a partition in the continuous space, and thus an alphabet A � fa1; a2; :::; ang we

can analyze the process in a discrete space S; where fstgt=1t=1 is an in�nite discrete

sequence. If the alphabet is well de�ned we can obtain rich dynamical information

(qualitative) by analyzing the data in the discrete space. Such analysis could be

very di¢ cult or even impossible in a continuous space.

Piccardi (2004) highlights that symbolic dynamics should be di¤erentiated

from symbolic analysis. The former denotes theoretical investigation on dynamical

systems, the latter is suggested when data are characterized by low degree of

precision. The idea in Symbolic Analysis is that discretizing the data with the

right partition we obtain a symbolic sequence. This sequence is able to detect the

very dynamic of the process when data are highly a¤ected by noise. Again here

the idea is to obtain rich qualitative information from data using statistical tools.

3.2.2 The Shannon Entropy as a Measure of Uncertainty Clausius (1865) in-

troduces the concept of entropy as a measure of the amount of energy in a thermo-

dynamic system. However, Shannon (1948) considers entropy as a useful measure

of uncertainty in the context of communication theory, where a completely random
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process takes the maximum value. For instance, let us consider the English lan-

guage as a nonlinear process. Some combinations of letters appear more frequently

than others. In fact, English is not random but a complex process. Taking a page

from an English Books we can note that the combinations of letters such as "THE"

shall appear more frequently than "XCV"1. However, a random language should

produce "THE" and "XCV" with the same probability. Hence the Shannon en-

tropy will compute a value for English language less than the maximum. This idea

is fundamental in the present work because if the symbolized time series behaves

as a random process, it should produce also the maximum entropy otherwise the

time series is not random.

Let us introduce the required properties of an entropy measure

1. It should be a function of P = (p1; p2; :::; pn) in this manner it is possible to

write H = H(p1; p2; :::; pn) = H(P ), where P is probability distribution of

the events.

2. It should be a continuous function of p1; p2; :::; pn. Small changes in p1; p2; :::; pn

should cause small changes in Hn.

3. It should not change when the outcomes are rearranged among themselves.

4. It should not change if an impossible outcome is added to the probability

scheme.

5. It should be minimum and possibly zero when there is no uncertainty.

1 According to Shannon (1951) the English word "THE" has a probability of 0.071, the next
more frequent word "OF" has a probability of 0.034.
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6. It should be maximum when there is maximum uncertainty which arises

when the outcomes are equally likely so that Hn should be maximum when

p1 = p2 = ::: = Pn = 1=n.

7. The maximum value of Hn should increase as n increases.

Shannon (1948) suggested the following measure:

Hn(p1; p2; :::; pn) = �
X

pi log2 pi (3.1)

Since the logarithms to base 2 are used, the entropy is measured in bits. This

measure satis�es all properties mentioned above and takes the maximum when all

events are equally likely. The latter is easily to con�rm by solving the Lagrange

equation (3.2).

�
X

pi log2 pi � �(
X

pi = 1) (3.2)

Since the function is concave its local maximum is also a global maximum,

this is consistent with Laplace�s principle of insu¢ cient reason that unless there

is information to the contrary, all outcomes should be considered equally likely.

Note also that when pi = 0 then 0:log0 = 0 which is proved by continuity since

xlogx ! 0 as x ! 0. Thus adding zero probability terms does not change the

entropy value.

In order to clarify the concept of Shannon, consider two possible events and

their respective probabilities p and q = 1�p. The Shannon entropy will be de�ned

by (3.3)
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Figure 3.1: Shape of the Shannon entropy function. Note that maximum happens when

the process is random (p=0.5)

H = �(p: log(p) + q: log(q)) (3.3)

Figure (3.1) shows graphically the function shape, note that the maximum is

obtained when the probability is 0.5 for each event. This case corresponds to a

random event (like �ipping a fair coin), on the other hand, note that a certain

event (when probability of one event is 1) will produce entropy equal to 0.

In general, Khinchin (1957) showed that any measure satisfying all the prop-

erties must take the following form:

�k
X

pi log2 pi (3.4)

Where k is an arbitrary constant. In particular it is possible to take k =

1=log2(n), which will be useful comparing events of di¤erent lengths. This is also

known as the Normalized Shannon Entropy, since the maximum is always equal to

1.
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3.3 Randomness Test using 2 symbols

3.3.1 Introduction In this section test for independence is derived by using 2

symbols. Note that if the process is random, in a sequence of 2 events there are

4 possibilities and the probability should be 1/4 for each possible case. Reasoning

in this manner, the probability of a combination of n events should be 2�n.2

As mentioned, when we use 2 symbols, a random process should be Bernoulli

with probability 1/2 for each result and normalized Shannnon entropy (H) equal

to 1 (this is not discussed). However, when we consider �nite samples the proba-

bility might be not exactly 1/2 and H can be less than 1. In order to derive the

empirical distribution and obtain a critical value in �nite samples the probabilty

might be not exactly 1/2 and H can be less than 1. In order to derive the empirical

distribution and obtain a critical value in �nite sample for H we conduct Monte

Carlo simulations. First, we simulate 10,000 random time series (of 0s and 1s)

sized T by using the generator of pseudo random events provided by MatLab 7.0.

Then for each time series we compute the frequency and the associated value of H.

Therefore, we de�ne the variable R = 1�H, and the simulated distribution of R

is obtained. The reason of de�ning R is only normalization, it is more manageable

to have most of the probability in value 0 instead of 1. Finally, we will have a

simulated distribution of R which will depend on T and with most of the proba-

2 Actually, as will be shown this test for independence does not need the assumption of
normality of the events, and permits the variance to follow di¤erent processes, like GARCH
process, or even an in�nite variance like in the case of the paretian distributions suggested by
Mandelbrot (1963). Even more, since introduced test is similar to the Run-test (when using 2
symbols), the advantages suggested by Moor and Wallis (1943) can be applied. It means, it can
be useful when the magnitude of the time series is not so accurate as the time series sign.
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bility concentrated on R=0 ( The maximum H value). Note that no probability

distribution is assumed, and so assumption about variance is considered. This is a

general test for completely independent events. Once we obtain the simulated dis-

tribution for the associated T , the critical values are computed in order to compare

the R-statistic from real data.

3.3.2 Obtaining the R-statistic from the Data Consider a time series of size T

obtained for the continuous variable r(t), for example, a time series of asset returns.

Let � be the mean and values above and below it have the same probability. Then

it is possible to de�ne the symbolic time series as in (3.5).

s(t) =

8>><>>:
0 if r(t)<�

1 if r(t)>�

(3.5)

Once the symbolic sequence is obtained, di¤erent subsequences are de�ned and

the R-statistic is computed. Finally, under the null hypothesis of randomness (

H0)R = 0 ) the R-statistic is compared with a critical value at 95%. If R-statistic

is larger than the critical value from the simulated distribution, the null hypothesis

is rejected and the process is not independent.

3.3.3 Symbolic Model for the Asset Prices In order to clarify how the symbolic

dynamics and the test work, we shall try to express the random walk model for

stock prices, in terms of a symbolic dynamic model with 2 symbols. Bachelier

(1900) and others proposed that stock market prices behaved as a random walk

process. It means that prices follow equation (3.6)
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Pt = Pt�1 + "t where "t � i:i:d N(0; �2) (3.6)

It means that in an e¢ cient stock market it is impossible to predict future

returns by using the past prices. The present prices immediately incorporates the

news and no trend is developed.

rt � i:i:d(0; �2) (3.7)

Assuming that asset returns follows (3.7) and that f(rt) is the density function

we obtain a stochastic model for �nancial returns. Using the symbolic dynamics

approach we can capture the qualitative essence of this process, its independence.

Let us take an alphabet A � f0; 1g with 2 symbols, it is now possible to discretize

the continuous space in the following way:

st =

8>><>>:
0 if rt < 0

1 if rt > 0
(3.8)

Now the process is Bernoulli and the following is its probability function:

P (s) =

8>>>>>><>>>>>>:
1=2 if s = 0

1=2 if s = 1

0 otherwise

(3.9)

Hence P (0) = P (1) = 1=2, no symbol is the most probable, and the process

is completely random. In fact, since the process is independent history does not

matter. In economics terms, it means that if some news arrive at the market,
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the stock prices immediately embody the information. However, in an ine¢ cient

market the actual price does not embody all the new information at the moment,

permitting the formation of a trend by adjustment. If a trend is developing in

the market, some patterns will be more frequents, by instance when a bubble is

forming, patterns with many 1s (increases in prices) are more frequent, reducing

the probability of having 0s (decreases).

In order to show how history does not matter, be the following symbolic se-

quence S` � fs1s2s3:::s`g 2 A` and de�ne (for the sake of simplicity) a history

h`�1 � fs1s2:::s`�1g 2 A`�1; then consider the set of all the possible histories�
hi`�1

	i=2`�1
i=1

: Since the process is independent P (s`=hi`�1) = P (s`=h
j
`�1) = P (s`) =

1=2. 8i; j; s`: No matter what happened in the past, the probability of the event

remains the same. No word, no subsequence commands the dynamics. Taking all

possible subsequences of length `; fsi`g
i=2`

i=1 then P (si`) = P (sjl ) = 2
�` 8i; j: If the

Normalized Shannon Entropy (H) as a measure of randomness is computed, this

process will produce the maximum, H(P (si`)) = 1:

3.3.4 Testing Independence in Asset Returns Di¤erent data series from the

NYSE were used. A dataset of 10,500 days of asset returns starting on January

1962 was obtained3, the symbolization is applied as in (3.5). Then we have two

possibilities in one day, returns above or below the mean. If the random walk

hypothesis is true, the probability of either event should be near 0.5 obtaining

a maximum entropy or R-statistic=0. Of course, if the process is independent

3 Data were obtained from �nance.yahoo.com
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Figure 3.2: Empirical density function for 2 consecutive moments when T=10,500

combinations of 2, 3 or more days should produce maximum entropy as well,

since all combinations are equally probable4. We simulated 10,000 random time

series sized T=10,500 and H was computed (and R = 1 � H) for 1 day, 2, 3,

4, and 5 consecutive days. Figure 3.2 shows the simulated distribution of R, for

combinations of 2 days. Note that most of the probability is accumulated near 0

which corresponds to H = 1 (a completely random process).

After obtaining the simulated distribution, the critical values were computed,

Table 1 shows the critical values at 95% of the Monte Carlo simulations.

Data series from the S&P 500, Dow Jones, and the 10 year treasure notes

interest rate were obtained. Taking 10,500 daily data for 11 asset returns, the 10

years treasure note interest rate di¤erence, the Dow Jones, and the S&P 500 index

di¤erences, then we symbolize the data series obtaining the respective R-statistics.

4 In general, taking n consecutive days of independent events the possibilities increase at the
rate of 2n and probability for each possibility is 2�n always producing a maximum entropy.



24

Table 2 presents the R-statistics for di¤erent asset returns. Note that all of the

R-statistic values (Table 2) are greater than the critical values (Table 1), rejecting

the null hypothesis that �nancial returns are completely random. Therefore after

discounting the average returns, the process is still not random, a result that

suggests evidence of ine¢ ciency at the daily frequency (See Singal (2004) for a

review of all the anomalies in the stock markets known until now).

Table 1

Critical Values at 95% for R-Statistic (T=10,500)

R-1 day R-2 days R-3 days R-4 days R-5 days

0.00026 0.00032 0.00040 0.00054 0.00075
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Table 2

Test of Randomness (R=1-H) Using the Mean as Partition (10,500 days)

Financial Returns R-1 day R-2 days R-3 days R-4 days R-5 days

Alcoa Inc. 0.0047* 0.0064* 0.0070* 0.0074* 0.0079*

Boeing Co. 0.0063* 0.0076* 0.0086* 0.0092* 0.0099*

Caterpillar Inc. 0.0039* 0.0058* 0.0066* 0.0070* 0.0073*

Coca Cola Co. 0.0025* 0.0029* 0.0031* 0.0032* 0.0033*

Du Pont EI 0.0044* 0.0045* 0.0046* 0.0047* 0.0048*

Eastman Kodak Co. 0.0036* 0.0038* 0.0040* 0.0042* 0.0045*

General Electric Co. 0.0021* 0.0022* 0.0025* 0.0028* 0.0030*

General Motors Co. 0.0051* 0.0054* 0.0059* 0.0063* 0.0068*

Hewlett Packard Co. 0.0017* 0.0022* 0.0027* 0.0030* 0.0035*

IBM 0.0010* 0.0010* 0.0011* 0.0012* 0.0014*

Walt Disney Co. 0.0027* 0.0044* 0.0053* 0.0061* 0.0067*

S&P 500 0.0001 0.0021* 0.0030* 0.0036* 0.0041*

Dow Jones 0.0000 0.0008* 0.0012* 0.0016* 0.0020*

10 years treasure notes 0.0133* 0.0182* 0.0200* 0.0208* 0.0215*

* Rejection of randomness hypothesis at 5%

Our results disagree with Coulliard and Davison (2005), who do not reject

randomness for IBM, General Electric Co., and S&P 500, using daily data.

Studying the cause of the bias toward randomness, we note that the most

frequent sequences are [0,0], [0,0,0], [0,0,0,0], and [0,0,0,0,0] in almost all the cases
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(S&P 500 is the exception presenting [1,1], [1,1,1], [1,1,1,1], and [0,0,1,1,1] as the

most frequent patterns). This re�ects persistence in remaining at the same regime

or else, it suggests the existence of autocorrelation.

3.3.5 Residual of an AR(1) In this subsection an autorregressive process of

order 1 is applied to the daily returns in order to eliminate possible autocorrela-

tion, as suggested in the previous subsection. Equation (3.10) shows the AR(1)

speci�cation:

rt = �0 + �1rt�1 + "t (3.10)

Where �1 is expected to be less than 1 (in the case of asset returns, it should

be around 0) and "t � i:i:d(0; �2): The residuals are tested in order to study if

they are random. Table 3 shows the R-statistics for the residuals of the AR(1)

models, note that the values are smaller than correspondent in Table 2. However,

comparing with critical values in Table 1, only the residuals for the Dow Jones

seem to be random, and S&P 500 for sequences shorter than 4 days. This suggests

that behavior of stock prices is less random than an index (i.e. a combination or

mix of di¤erent stock prices)5. Note that, even when autocorrelation is considered,

daily stock returns seem to retain a deterministic component.

5 It is well known that a linear combination of variables produces an entropy greater than the
entropy of the variables separately.
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Table 3

2-symbols Test of Randomness (R=1-H) on AR(1)-residuals (T=10,499)

Financial Returns R-1 day R-2 days R-3 days R-4 days R-5 days

Alcoa Inc. 0.00060* 0.00060* 0.00070* 0.00080* 0.00110*

Boeing Co. 0.00240* 0.00260* 0.00320* 0.00360* 0.00410*

Caterpillar Inc. 0.00028* 0.00032* 0.00053* 0.00065* 0.00086*

Coca Cola Co. 0.00090* 0.00090* 0.00090* 0.00100* 0.00110*

Du Pont EI 0.00170* 0.00170* 0.00170* 0.00180* 0.00190*

Eastman Kodak Co. 0.00320* 0.00330* 0.00350* 0.00370* 0.00400*

General Electric Co. 0.00120* 0.00130* 0.00150* 0.00170* 0.00200*

General Motors Co. 0.00500* 0.00530* 0.00580* 0.00620* 0.00670*

Hewlett Packard Co. 0.00130* 0.00160* 0.00210* 0.00240* 0.00280*

IBM 0.00070* 0.00070* 0.00080* 0.00100* 0.00120*

Walt Disney Co. 0.00060* 0.00080* 0.00120* 0.00170* 0.00210*

S&P 500 0.00000 0.00007 0.00037 0.00064* 0.00090*

Dow Jones 0.00001 0.00004 0.00015 0.00034 0.00052

10 years treasure notes 0.00090* 0.00090* 0.00100* 0.00100* 0.00120*

* Rejection of randomness hypothesis at 5%

3.3.6 Comparison with Other Tests Table 4 shows the performance of the

test for 2 symbols, compared with other unit root tests (ADF, Variance Ratio

Test, Runs Test, and BDS). With daily data, the R-statistic test is able to reject

independence in all cases. However, the Runs test which seems to be similar to
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the present test when taking 2 symbols, only rejects the hypothesis for 2 cases,

IBM and Kodak. The Variance Ratio Test by Lo and MacKinlay (1988) rejects

the hypothesis for 11, while the ADF does not reject stationarity in the series6.

The most popular nonlinear test (the BDS test) rejects the null hypothesis of

independence in all the cases as well. Thus, the 2-symbols randomness test seems

to be as good as the BDS test.

Table 7
Different Tests applied to Daily Data

Financial Returns ADFÝaÞ Variance Ratio TestÝbÞ Run TestÝcÞ RstatisticÝdÞ BDS TestÝeÞ

t5% pval VRq=16 Sig.Level Z Asymp.Sign R3 CVñatñ5% CV

Alcoa Inc. 96.71 0.0001 2079.06 0.00000 7.33 0.0000 0.0070 0.0004* 0.0000*
Boeing Co. 98.81 0.0001 0.3657 0.71459* 5.50 0.0000 0.0086 0.0004* 0.0000*
Caterpillar Inc. 97.66 0.0001 0.6664 0.50513* 6.56 0.0000 0.0066 0.0004* 0.0000*
Coca Cola Co. 103.31 0.0001 1.8321 0.06693* 2.48 0.0132 0.0031 0.0004* 0.0000*
Du Pont EI 101.92 0.0001 0.3787 0.70491* 5.49 0.0000 0.0046 0.0004* 0.0000*
Eastman Kodak Co. 101.85 0.0001 1.7386 0.08210* 2.47 0.0134 0.0040 0.0004* 0.0000*
General Electric Co. 102.21 0.0001 2.0753 0.03795* 2.29 0.0221 0.0025 0.0004* 0.0000*
General Motors Co. 74.74 0.0001 1.3572 0.17471* 2.24 0.0252 0.0059 0.0004* 0.0000*
Hewlett Packard Co. 102.14 0.0001 1.6939 0.09028* 3.15 0.0016 0.0027 0.0004* 0.0000*
IBM 104.02 0.0001 0.4748 0.63496* 0.29 0.7713* 0.0011 0.0004* 0.0000*
Walt Disney Co. 100.68 0.0001 1.2775 0.20142* 1.15 0.1447* 0.0053 0.0004* 0.0000*
S&P 500 71.86 0.0001 0.3900 0.69655* 12.18 0.0000 0.0030 0.0004* 0.0000*
Dow Jones 100.97 0.0001 0.2311 0.81723* 7.75 0.0000 0.0012 0.0004* 0.0000*
10 years treasure notes 93.55 0.0001 3.9651 0.00007 12.56 0.0000 0.0200 0.0004* 0.0000*
(a) Augmented Dickey Fuller test using EViews4.0.
(b) Adjusted for the possible effect of heteroscedasticity. EViews4.0.
(c) Using SPSS13.0.
(d) Based on own calculations.
(e) Distance (m) is equal to 1.5 and epsilon (P) is around 0.7.
* Rejection of the randomness at 5%

6 Remember the well known bias of this test to accept the unit root hypotesis.
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3.4 Test for Independence using 4 symbols

The purpose of this section is to extend and con�rm the results obtained in

the previous section by using a di¤erent symbolization. The symbolic stock price

model is extended by using 4 symbols and the previous time series are tested again.

3.4.1 4-Symbols Financial Symbolic Model We extend the model introduced

in section 3 to incorporate the fact that sometimes the absolute values of the

returns tend to remain in regimes of high volatility or low volatility, for long time.

We select a di¤erent alphabet and a di¤erent partition, representing the process

in symbolic dynamics.

De�ne an alphabet A � f1; 2; 3; 4g, where 1 and 4 represent high negative and

positive returns, while 2 and 3 are low negative and positive returns. De�ning

f(rt) as the return empirical distribution, a transformation from the real space to

symbolic space is de�ned by (3.11)

T (rt)

8>>>>>>>>>><>>>>>>>>>>:

st = 1 if rt � f�125%(rt)

st = 2 if f�125%(rt) � rt � f�150%(rt)

st = 3 if f�150%(rt) � rt � f�175%(rt)

st = 4 if rt � f�175%(rt)

(3.11)

If the process is completely random the density function is discrete uniform as

is suggested in (3.12). Hence passing from one symbol to the other is independent,

all the events having the same probability.
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P (s)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1=4 if s = 1

1=4 if s = 2

1=4 if s = 3

1=4 if s = 4

0 otherwise

(3.12)

Note that by in the terminology introduced in the previous section, here also

history does not matter since P (s`=hi`�1) = P (s`=h
j
`�1) = P (s`) = 1=4 8i; j; s`: In

order to embody the volatility clustering e¤ect in symbolic dynamics, consider two

sub-alphabets, A1 � f1; 4g and A2 � f2; 3g, with A = A1 [ A2, of course. Hence

elements belonging to A1 correspond to the space of "High Volatility" and the

elements from A2 to "Low Volatility". De�ne h1`�1 � fs1;1; s2;1; s3;1; :::; s`�1;1g 2

A`�11 ; a history of "Low Volatility", and h2`�1 � fs1;2; s2;2; s3;2; :::; s`�1;2g 2 A`�12 ;

a history of "High Volatility".

Now the process is "History-Dependent", inequations (3.13) and (3.14) model

the fact that volatility tends to accumulate in clusters.

P (s1;`=h1
i
`�1) > P (s1;`=h2

j
`�1) 8i; j; s1;` (3.13)

P (s2;`=h2
i
`�1) > P (s2;`=h2

j
`�1) 8i; j; s2;` (3.14)

Note that the probability of high (low) positive or negative returns is high when

in the past we had high (low) positive or negative returns. However, no particular

temporal pattern is more probable than other. For instance this may be the case
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because inside the set
�
h1i`�1

	i=2`�1
i=1

there is no h1k`�1 such that P (s1;`=h1
k
`�1) >

P (s1;`=h1
i
`�1) 8i; k; k 6= i: I.e., there is no history that is better predicting si;`.

Then the test to be developed is able to detect the existence of "strange"

patterns, if any, telling us "how they look like". For instance, we can test directly

asset returns or their AR residuals in order to detect the existence of such strange

patterns. In case of the existence of a strange patterns or unstable cycles, the

inequations (3.15) and (3.16) would embody these patterns in our symbolic model.

P (s1;`=h1
k
`�1) > P (s1;`=h1

i
`�1) > P (s1;`=h2

j
`�1) 8j; i; k 6= i; s1;` (3.15)

P (s2;`=h2
k
`�1) > P (s2;`=h2

i
`�1) > P (s2;`=h2

j
`�1) 8i; j; k 6= i; s2;` (3.16)

Once more, we have a general model for stock prices which not only considers

the particular case of a random walk but also allows for more complex processes

as those with volatility clustering. The latter take place if higher probability is

assigned to conditional events belonging to A1 � f1; 4g and A2 � f2; 3g sepa-

rately, and lower probability to events combining elements of the two subsets. For

instance, probability of being in 4 after having been in 1 in the past, should be

greater than the probability of being in 4 after 2 in the past, (P (4=1) > P (4=2)).

In words, if the returns are in a high volatility regime they are likely to remain in

the same regime.
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3.4.2 Construction of the Randomness Test (R) by using 4 symbols In this

subsection the randomness test is constructed by using 4 symbols. The same

method introduced in the section above is applied. We simulate random samples

of size T and then the frequencies are computed and the entropy is calculated. This

process is repeated 10,000 times, and an empirical distribution for R is obtained

as explained in the section above. The test was computed by using 4 regions

according to equation 3.11. For daily data we proceed to simulate 10,000 samples

of size equal to 10,500, Table 5 shows the critical values at 5%.

Table 5

Critical Values at 95% for R-Statistic (T=10,500)

R-1 days R-2 days R-3 days R-4 days

0.0003 0.0005 0.0010 0.0026

We take asset returns netting the mean and then de�ne three thresholds in the

empirical distribution in order to compute the normalized entropy. Table 6 shows

the R-statistic for di¤erent asset returns.



33

Table 6

Test of Randomness (R=1-H) Using 4 symbols (10,500 days)

Financial Returns R-1 day R-2 days R-3 days R-4 days

Alcoa Inc. 0.0047* 0.0077* 0.0098* 0.0126*

Boeing Co. 0.0062* 0.0084* 0.0108* 0.0137*

Caterpillar Inc. 0.0038* 0.0066* 0.0085* 0.0113*

Coca Cola Co. 0.0024* 0.0044* 0.0061* 0.0084*

Du Pont EI 0.0044* 0.0069* 0.0090* 0.0118*

Eastman Kodak Co. 0.0037* 0.0049* 0.0063* 0.0085*

General Electric Co. 0.0020* 0.0040* 0.0057* 0.0082*

General Motors Co. 0.0051* 0.0072* 0.0091* 0.0115*

Hewlett Packard Co. 0.0017* 0.0031* 0.0048* 0.0073*

IBM 0.0010* 0.0025* 0.0041* 0.0065*

Walt Disney Co. 0.0027* 0.0055* 0.0076* 0.0105*

S&P 500 0.0000 0.0040* 0.0072* 0.0108*

Dow Jones 0.0000 0.0022* 0.0043* 0.0072*

10 years treasure notes 0.0134* 0.0232* 0.0309* 0.0381*

* Rejection of randomness hypothesis at 5%

Table 6 shows that the randomness is rejected in all the cases as equal as just

like when using 2 symbols and once more the random walk seems to be a bad model

when using daily data. Analyzing the patterns causing this bias with respect to

randomness, we observe the following: 1) The sequence [2,2] is the most frequent7

7 In all the cases the frequence is around 0.09, but existing 16 possibilities a random process
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in all the asset, the indices are the exception (in fact, DJIA and S&P500 shows

[1,1] as the most frequent), in most of the cases the second and third most frequent

patterns are [1,1] and [4,4]; 2) For sequences of length three the sequence [2,2,2] is

the most frequent for assets and [1,1,1] for the indices.; 3) for four-length sequences,

[2,2,2,2] is the most frequent and [1,1,1,1] for the two indices. These facts suggest

the persistence in a regime of low loss [2] (below the mean) when considering asset

returns, but persistence in a regime of high loss [1] with the indices.

3.4.3 Residual of an AR(1) As in the previous section, we applied an autor-

regressive process of order 1 to daily returns in order to remove linear components

of the series. Residuals of these models are tested in order to see if they are random.

Table 7 shows R-statistic for such residuals. Note that randomness is rejected in all

cases. This result suggests that a linear model is not a good approach to modeling

daily asset returns due to the presence of nonlinear components.

should present a frequence near 0.06.



35

Table 7

4 symbols Test of Randomness (R=1-H) on AR(1)-residuals (T=10,499)

Financial Returns R-1 day R-2 days R-3 days R-4 days

Alcoa Inc. 0.0000 0.0017* 0.0034* 0.0062*

Boeing Co. 0.0000 0.0021* 0.0044* 0.0071*

Caterpillar Inc. 0.0000 0.0017* 0.0034* 0.0058*

Coca Cola Co. 0.0000 0.0021* 0.0036* 0.0059*

Du Pont EI 0.0000 0.0029* 0.0053* 0.0082*

Eastman Kodak Co. 0.0000 0.0021* 0.0038* 0.0061*

General Electric Co. 0.0000 0.0027* 0.0046* 0.0072*

General Motors Co. 0.0000 0.0029* 0.0051* 0.0078*

Hewlett Packard Co. 0.0000 0.0017* 0.0035* 0.0058*

IBM 0.0000 0.0016* 0.0032* 0.0057*

Walt Disney Co. 0.0000 0.0023* 0.0041* 0.0067*

S&P 500 0.0000 0.0025* 0.0055* 0.0089*

Dow Jones 0.0000 0.0013* 0.0031* 0.0059*

10 years treasure notes 0.0009* 0.0086* 0.0156* 0.0223*

* Rejection of randomness hypothesis at 5%

Notice that even when an AR(1) is applied to the returns, the test is able to de-

tect determinism in the residuals. Table 7 shows that randomness is rejected for the

residuals of an AR(1) model for the returns. The most frequent patters still show

persistence in regimes of "high volatility" or "low volatility", [2,3],[3,2],[1,1],[4,4],



36

[3,2,3],[1,1,4],[3,2,3,2],[1,1,1,4].

Even eliminating autocorrelation, results are similar to the previous one.

3.5 The Approximated Distribution of the R-statistic

The objective of this subsection is to derive an approximation for the R-statistic

distribution under the null hypothesis of randomness. This will be useful to analyze

some properties of the introduced statistic.

At �rst we obtain the approximated distribution of R under the null hypothesis

of independence when 2 symbols are considered. Assume that s can take 2 values

f1; 2g and it is distributed as follows:

px

8>>>>>><>>>>>>:

1
2
+ "1 if s = 1

1
2
+ "2 if s = 2

0 otherwise

Suppose also that "i represents the sample size noise, and it is distributed as a

normal N2(0; �2�); where �2 is less than 1/2 and tending to zero as the sample size

increases, note that
i=2X
i=1

"i = 0; since the total noise should be cancelled in order to

maintain the sum of probabilities equal to 1 for the density ps. This simply tries

to re�ect the fact that for small sample of random events the frequency may not

be exactly equal to 1/2.

Consider R = 1�H, as explained in the previous section and let us derive the

approximated distribution of the R-statistic for length 1 in the following manner:
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R1 = 1�
�
� 1

log2(2)

���
1

2
+ "1

�
log2

�
1

2
+ "1

�
+

�
1

2
+ "2

�
log2

�
1

2
+ "2

��
(3.17)

Note that log2(
1
2
+ "i) = log2(1+2"i)�1 and since j"1j � 1 then log2(12 + "i) '

2k"i � 1, where k = 1= ln(2): Then R1 ' 1 � (�1)((1
2
+ "1)(2k"1 � 1) + (12 +

"2)(2k"2 + 1)): After some calculations and because the theorem we will show

later, it is obtained that:

R1 ' 2k�2
�
"21 + "22
�2

�
� 2k�2�2 (3.18)

Where the term in brackets is distributed as a chi-square with 1 degree of

freedom. Note that R1 positively depends on �2, the noise variance produced

by the small sample e¤ect. When the sample increases, the variance is reduced,

determining a smaller critical value for R (in the limit, the variance is zero when

the sample is in�nite). In fact, note the di¤erent tables of critical values (see

Appendix I), when the sample is smaller, the critical values increase.

Let us assume now that s can take 4 values f1; 2; 3; 4g and is distributed as

follows.
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ps

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1
4
+ "1 if s = 1

1
4
+ "2 if s = 2

1
4
+ "3 if s = 3

1
4
+ "4 if s = 4

0 otherwise

(3.19)

Suppose a vector " � ("1; "2; "3; s4) representing the sample size noise and

consider it to be distributed as a multinormal N4(0; �2�); where �2 is less than

1/4 and tending to zero and the matrix � is idempotent matrix as follows:

� �

266666666664

3=4 �1=4 �1=4 �1=4

�1=4 3=4 �1=4 �1=4

�1=4 �1=4 3=4 �1=4

�1=4 �1=4 �1=4 3=4

377777777775
(3.20)

Of course,
i=4X
i=1

"i = 0; since the total noise should cancel to maintain the sum

of probabilities equal to 1 for the density ps.

Substituting 3.19 in R = 1�H, we obtain equation 3.21.

R1= 1�
�
� 1

log2(4)

�( i=4X
i=1

�
1

4
+ "i

�
log2

�
1

4
+ "i

�)
(3.21)

Note that log2(
1
4
+ "i) = log2(1+4"i)� 2 and since j"ij � 1 then log2(14 + "i) '

+4k"i�2, where k = 1= ln(2): ThenR1 ' 1�
�
� 1
log2(4)

�( i=4X
i=1

�
1
4
+ "i

�
(4k"i � 2)

)
=

1+1
2

(
�2 +

i=4X
i=1

4k"2i + (k � 2)
i=4X
i=1

"i

)
. Since

i=4X
i=1

"i = 0, the following expression

is obtained:
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R1 ' 2k�2
�
"21 + "22 + "23 + "24

�2

�
(3.22)

Where the term in brackets is a quadratic form in random normal variables.

As Mathai and Provost (1992) show, the distribution of quadratic forms in normal

variables has been extensively studied by many authors. Various representations of

the distribution function have been derived and several di¤erent procedures have

been given for computing the distribution and preparing appropriate tables. Ap-

proximated distributions have been proposed by Patnaik (1949), Pearson (1959),

Siddiqui (1965), Solomon and Stephens (1978) and Oman and Zacks (1981). How-

ever, in the present case we can apply the following theorem (Mathai and Provost

(1992) p. 197):

Necessary and su¢ cient conditions for a quadratic form X�AX to be distrib-

uted as a chi-square variates with r degrees of freedom when X has a multivariate

normal distribution with mean vector 0 and possibly singular covariance matrix

�, are:

(i) (A�)2 = (A�)3 and tr(A�) = r

(ii) tr(A�)2 = tr(A�) = r and �(�A�) = r

Theorem can in fact be applied in the present case. The quadratic form ob-

tained is Q =
n
"21+"

2
2+"

2
3+"

2
4

�2

o
= X�AX; where X �

�
"1
�
; "2
�
; "3
�
; "4
�

�
; X is distributed

N4(0;�); A = A�symmetric matrix, and � is symmetric, singular, and idempo-

tent. Since tr(A�) = 3; then X�AX ��23 Therefore, under these assumptions the

approximated distribution of the R-statistic for 1 length is the following:.
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R1 approximately distributes as 2k�2�23 (3.23)

Generalizing for a given number of random events n, A = I and the covariance

matrix has (n� 1)=n in the principal diagonal and �1=n elsewhere as follows:

�nxn �

266666666664

(n� 1)=n �1=n ::: �1=n

�1=n (n� 1)=n ::: �1=n

::: ::: ::: :::

�1=n �1=n ::: (n� 1)=n

377777777775
(3.24)

Therefore, since tr(A�) = (n � 1); it is possible to assert that R is approxi-

mately distributed as n
log2(n)

k�2�2n�1; where k = 1=ln(2).

Considering �2 as the variance due to sample size error, notice that when

�2 = 0 (there is no error) R is equal 0 and, as it was mentioned, it is a complete

random process. However, �2 increases as the sample size T is reducing, then it is

possible to establish that lim�2T = 0 as T ! 1; and that R increases as �2T and

T decreases, see Figure 3.3. As �2 increases R-statistic also increases, this being

the reason why the critical values increase for small samples (an so, �2 increases).

Note in Figure 3.4 as the length increases, the maximum moves to the right

for values larger than 0, and values far from 0 have greater probability, this is the

reason why the simulated critical values in Table 12, 14, 16 also increase when the

length increases.

Table 8 compares the critical values from the simulation density (SD) and

the critical values from the approximated distribution (AD). The two e¤ects are
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Figure 3.3: Variation of the Approximated Density with the variance of the size sample

Figure 3.4: Shape of the approximated distribution of R for di¤erent lenghts
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shown, the critical values increase as the sample size decreases and longer lengths

are considered. The critical values from the AD are more conservative than from

the SD, however they get closer, as the sample increases. Notice in Table 8 that

for T=10,500 the di¤erence between SD and AD is not so large.

Table 8. CV at 95% from the S. Den. (SD) and the A. Den. (AD)

T=500 T=2,000 T=10,500

Length SD AD SD AD SD AD

R-1 0.0056 0.0084 0.0014 0.0021 0.0003 0.0004

R-2 0.0097 0.0168 0.0024 0.0042 0.0005 0.0008

R-3 0.0214 0.0388 0.0057 0.0098 0.0010 0.0019

R-4 0.0573 0.1045 0.0146 0.0263 0.0026 0.0050

In all the cases the mean of �2 from the simulations was considered

In Figure 3.5 the simulated and approximated densities are compared for R of

di¤erent lengths, and the approximated distributions follow similar shapes. Note

also that as the length increases the shape tends to be normal. Actually, Mathai

and Provost (1992) assert that this kind of quadratic form converges to normal

distribution as the degree of freedom increases.

In summary, the approximated distribution of R was obtained to study some

properties of the R-statistic density under the null hypothesis. Some facts are

con�rmed: at �rst for small sample the variance increases, increasing the critical

value at 5%. In the second place, as longer lengths are considered the critical

value also increases. The approximated distribution is similar to the empirical



43

Figure 3.5: Simulated (dashed line) and Empirical (solid line) densities for (a) R1, (b)

R2, (c) R3
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distribution in shape and the critical values are close. Even if approximated critical

values are more conservative than empirical ones, they tend to each other as the

sample size increases.

3.6 Power and Size of the 4-symbol Randomness Test

At �rst, we conduct an experiment aiming to check if the critical values

used in the test are unbiased. A time series of length 500 is generated by a Gaussian

distribution, the test is applied and the null hypothesis is rejected or not, this

procedure being repeated 1,000 times. Table 9 shows the size of the randomness

test for various signi�cance levels, actually the results are the percentage of the

null hypothesis rejection over 1,000 simulations. For instance, for columns with

signi�cance level � = 0:05, the proportion of times the null hypothesis is rejected

should be 5 per cent of the time.

Table 9: Size of the 4-symbols Randomness

length � = 1% � = 2:5% � = 5% � = 10%

2 0.0000 0.0000 0.0010 0.0060

3 0.0010 0.0020 0.0100 0.0270

4 0.0000 0.0000 0.0000 0.0000

Sample Size T=500

Table 9 also suggests that the test tends to accept the null hypothesis more

times than the critical values in small samples. However, the results alleviate when

considering a length of 3 consecutive events, here the best result is obtained, note
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that for � = 5%; the independence is rejected 1% of the time.

Following Liu et al. (1992) we try to check the power and size of the 4-

symbols randomness test comparing the results with the popular BDS test. Using

Monte Carlo Simulation we simulate 2,000 times, samples of 500 and 2,000, and

for di¤erent models (see appendix II). Then, an AR(1) process is applied to all the

time series and the residuals are tested applying our test (for di¤erent lengths). In

addition, the BDS test is also applied in order to study its performance compared

to our test in detecting nonlinearity. As remarked by Liu et al. (1992), since the

tests are applied as tests for stochastic or deterministic nonlinearity, it is necessary

to remove linear components of the series before applying them. To do this, in

practice an AR(p) model is built for xt, using some criteria such as AIC or BIC.

Then the test is applied to the residuals of the linear �tting procedure. The BDS

test is applied with a distance (m) equal to 1.5 and an epsilon (") around 0.7, and

the Randomness Test is applied for a length of 2 and 3 consecutive events.
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Table 10. Size and Power of the 4-symbolic Randomness Test for residuals

T=500 T=2,000 T=500 T=2,000 T=500 T=2,000 T=500 T=2,000

AR(1) MA(2) NLSIGN Bilinear

BDS 0.0610 0.0490 0.0430 0.0485 0.0570 0.0495 1.0000 1.0000

R-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3820 0.2830

R-2 0.0020 0.0020 0.0030 0.0020 0.0070 0.0385 0.8890 1.0000

R-3 0.0070 0.0050 0.0050 0.0060 0.1620 0.9765 1.0000 1.0000

Logistic Map Tent Map NLMA1 BLMA

BDS 0.8880 0.9965 1.0000 1.0000 0.0980 0.1360 1.0000 1.0000

R-1 0.0000 0.0000 1.0000 1.0000 0.1350 0.4360 0.2290 0.3210

R-2 0.9720 0.9900 1.0000 1.0000 0.1800 0.7620 0.9990 1.0000

R-3 0.9720 0.9900 1.0000 1.0000 0.9840 1.0000 0.9990 1.0000

Note: The residuals from �rst-order autoregressive regression for AR(1), NLSIGN,

Bilinear. For MA(2), BLMA, NLMA1 models, residuals are deriver from a second-order

autorregressive regression. In case of Chaos, tests are applied to the original series. The

numbers show the percentage rejection in 2000 replications with 5 percent signi�cance level

Note the performance of the test of nonlinearity proposed in the present chap-

ter has a high power respect to the BDS. At �rst, note that both tests have good

performance recognizing nonlinearity and chaos, when testing chaotic processes

such as the Logistic Map and the Tent map both tests reject independence hy-

pothesis more than 90% of the times. Residuals of AR(1) and MA(2) models are

also recognized as independent, note that both tests reject null hypothesis less
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than 5% of the times. Bilinear and bilinear moving average (BLMA) models are

also recognized by the two test, note that both BDS and R-statistic reject the

null hypothesis more than 90%. According to Liu et al. (1992) the BDS has the

greatest power on the Bilinear model, in fact the hypothesis is rejected 100%, but

also in the R-statistic test the hypothesis is rejected. The most important, note

that Liu et al. (1992) remark that BDS has the least power on the nonlinear sign

model (NLSIGN), the residuals seem to be i.i.d. by the BDS. Actually, note in

Table 21 that the hypothesis is rejected around 5% of the time as in a random

process, however R-statistic rejects the hypothesis more than 90% of the time for

a sample of 2,000 and for a length of 3 events. The NLMA1 is another case where

independence is rejected few times by using BDS test but more than 90% for the

present R-statistic. Therefore it is possible to conclude two things: 1) At �rst,

introduced test seems to have greater power than the BDS recognizing these kind

of nonlinearity; 2) the test has the best performance when considering a length of

3 consecutive events and when the sample is large.

3.7 Conclusions

The main purpose of the chapter was to introduce a statistic in order to measure

the informational e¢ ciency in the stock markets. We used symbolic dynamics to

rule out the noise that typically a¤ects asset returns. On the other hand, we

applied the Shannon entropy widely used in information theory, to recover the

quantity of information in the data. Even though the present chapter is a bit

technical, it is important because the introduced statistic will be central in the
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rest of the dissertation.

We constructed a test to check if the EMH, at least in its weak version is

present in some assets and indices. Models for 2 and 4 symbols are constructed to

compare the results. An some expertiments were realized to check the performance

of the statistics.

We obtained that the randomness hypothesis is rejected for the daily asset

returns and indices at levels and when the deterministic linear components are

eliminated through an AR(1) model. The results are similar whether using 2 or 4

symbols.

An approximate distribution of the test was obtained in order to derive certain

results. It was shown that the critical value increases when taking smaller samples

and longer lengths, on the other hand critical values between asymptotic and sim-

ulated density seem to be similar when taking larger samples. Some experiments

were done in order to check the power and size of the test. At �rst, simulation

of normal random process was produced the test presented the best performance

for a length of 3 consecutive events. However, the test seems to be conservative,

accepting the null hypothesis more time than the critical value probability. Per-

formance was compared with the famous BDS test, some nonlinear models were

tested and both tests presented good performance. In special R-statistic with 3

length detected NLSIGN model, while BDS did not detected this nonlinearity as

it was highlighted by Liu et al. (1992). Note that also NLMA1 was detected by R-

statistic (rejecting null hypothesis more than 90% of the time) while BDS rejected
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the null hypothesis only 14% percent of the time.

The next 2 chapters will use this measure for informational e¢ ciency. On the

one hand, we shall measure the e¢ ciency for di¤erent stocks trying to study if

developed markets are more e¢ cient than emerging ones. On the other hand, in

the chapter 5 we shall study the relationship between e¢ ciency and the probability

of a crash.
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3.9 APPENDIX I: Critical Values for di¤erent samples (Test for 2-symbols)

Table 9

Critical Values at 1%

Sample Size R1 R2 R3 R4 R5

30 0:16340 0:17650 0:14640 0:28170 0:33680

60 0:08170 0:08910 0:09890 0:14130 0:18520

90 0:05190 0:05970 0:06980 0:08920 0:12270

100 0:04930 0:05240 0:06200 0:08040 0:11030

200 0:02350 0:02620 0:03100 0:03940 0:05270

300 0:01560 0:01800 0:02140 0:02660 0:03440

500 0:00910 0:01060 0:01270 0:01580 0:02090

600 0:00770 0:00890 0:01070 0:01330 0:01740

900 0:00510 0:00600 0:00700 0:00870 0:01150

1,000 0:00490 0:00550 0:00630 0:00780 0:01040

2,000 0:00240 0:00260 0:00310 0:00380 0:00510

3,000 0:00160 0:00180 0:00210 0:00260 0:00350

5,000 0:00100 0:00110 0:00130 0:00160 0:00200

6,000 0:00080 0:00090 0:00100 0:00130 0:00170

9,000 0:00060 0:00060 0:00070 0:00090 0:00110

10,500 0:00045 0:00050 0:00059 0:00073 0:00095
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Table 10

Critical Values at 5%

Sample Size R1 R2 R3 R4 R5

30 0:08170 0:11970 0:10620 0:21340 0:28110

60 0:05190 0:05650 0:06960 0:10380 0:14980

90 0:02900 0:03710 0:04820 0:06680 0:09860

100 0:02900 0:03440 0:04360 0:05950 0:08740

200 0:01420 0:01670 0:02120 0:02910 0:04210

300 0:00930 0:01140 0:01470 0:01930 0:02740

500 0:00560 0:00680 0:00860 0:01150 0:01630

600 0:00460 0:00550 0:00720 0:00970 0:01360

900 0:00300 0:00370 0:00470 0:00640 0:00890

1,000 0:00280 0:00330 0:00420 0:00560 0:00800

2,000 0:00140 0:00170 0:00210 0:00280 0:00400

3,000 0:00090 0:00110 0:00140 0:00190 0:00270

5,000 0:00050 0:00070 0:00090 0:00110 0:00160

6,000 0:00050 0:00060 0:00070 0:00090 0:00130

9,000 0:00031 0:00037 0:00047 0:00063 0:00088

10,500 0:00026 0:00032 0:00040 0:00054 0:00076
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Table 11

Critical Values at 10%

Sample Size R1 R2 R3 R4 R5

30 0:05190 0:08920 0:08800 0:18500 0:25610

60 0:02900 0:04250 0:05710 0:08820 0:13310

90 0:02290 0:02840 0:03880 0:05690 0:08680

100 0:01850 0:02600 0:03490 0:05050 0:07670

200 0:01040 0:01240 0:01720 0:02430 0:03660

300 0:00630 0:00860 0:01150 0:01620 0:02400

500 0:00420 0:00520 0:00690 0:00960 0:01410

600 0:00320 0:00410 0:00570 0:00790 0:01170

900 0:00220 0:00280 0:00380 0:00530 0:00780

1,000 0:00200 0:00260 0:00340 0:00480 0:00700

2,000 0:00100 0:00130 0:00170 0:00240 0:00350

3,000 0:00060 0:00080 0:00110 0:00160 0:00230

5,000 0:00040 0:00050 0:00070 0:00090 0:00140

6,000 0:00030 0:00040 0:00060 0:00080 0:00120

9,000 0:00022 0:00028 0:00037 0:00052 0:00076

10,500 0:00018 0:00024 0:00032 0:00045 0:00066

3.10 APPENDIX II: Models applied in the size and power experiment8

1) The autorregressive model, AR(1):
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rt = 0:45:rt�1 + "t

2) The moving average process, MA(2):

rt = "t � 0:1:"t�1 + 0:2:"t�2

3) The Non Linear Sign model, NLSIGN:

rt = SIGN(xt�1) + "t; SIGN(x) = 1; 0; or � 1; if x < 0;= 0; > 0

4) T
R
he Bilinear model, BL:

rt = 0:7:rt�1"t�2 + "t

5) The Logistic Map:

rt = 0:4:rt�1:(1� rt�1)

6) The Tent Map:

8>><>>:
rt = 0:49:rt�1 if 0 � rt�1<0:49

rt = (1� 0:49)�1:(1� rt�1) if 0:49 � rt�1 � 1

7) The Nonlinear Moving Average, NLMA1:

rt = "t � 0:4:"t�1 + 0:3:"t�2 + 0:5:"t:"t�2
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8) The Bilinear Moving Average, BLMA:

rt = 0:4:rt�1 � 0:3:rt�2 + 0:5:rt�1"t�1 + 0:8:"t�1 + "t



CHAPTER 4

The Informational E¢ ciency: Emerging vs Developed Markets

4.1 Introduction

The Stock Exchange Markets around the world are governed by di¤erent rules.

Some markets are more liberal, another markets have more constraints. In par-

ticular, the Emerging Markets have been accused of being ine¢ cient in contrast

to developed markets where the information is quickly assimilated. As far as we

know, there are few studies measuring the e¢ ciency for di¤erent stock markets.

In particular, Cajueiro and Tabak (2004) (2005) use the Hurst exponent as a ef-

�ciency measure concluding that Asian markets are more e¢ cient than those in

Latin America (with the exception of Mexico).

The present chapter aims to measure the informational e¢ ciency of di¤erent

stock markets around the world in order to analyze if the emerging markets are

more ine¢ cient than the developed ones. In words, news a¤ecting the emerging

market encounter greater di¢ culty to be incorporated in the prices compared to the

developed markets. The following section will introduce the methodology, which is

basically the Shannon entropy and the symbolic analysis used and analyzed in the

previous chapter. In section three a ranking of e¢ ciency is constructed for di¤erent

countries taking the last teen years as period of study. Finally, some conclusions

are drawn.
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4.2 Methodology

As explained above, the measure of e¢ ciency is the Shannon entropy applied to

coded time series. In the present case 2 symbols are used taking, as threshold, the

average returns of the indices. After taking the coded time series we compute the

modi�ed Shannon entropy for di¤erent lengths as shown in equation 4.1. Actually,

note that in this equation H` is 3.4 when k = 1=log2(NO).

H` =
�1

log2(NO)

i=2`X
i=1

pi;` log2 pi;` (4.1)

H` is the modi�ed Shannon entropy for a length `, pi;` is the probability for the

event i of the length `, note that NO is the number of observed sequences with non-

zero frequency as propossed by Finney et al. (1998). Therefore, for some sequences

the entropy will arrive to a minimum which will be the level of e¢ ciency.

4.3 Ranking of Informational E¢ ciency

In this section, a ranking of the informational e¢ ciency is constructed for

di¤erent stock markets around the world. The dataset was basically obtained

from �nance.yahoo.com, where daily data was obtained for the stock indices from

July 1, 1997 to December 14, 2007. Data for Russian, Slovenia and Czech Republic

were obtained from their respective stock markets sites, www.rts.rs, www.ljse.si,

and www.pse.cz.

The entropies were applied to the coded time series, in most cases the minimum

entropy is obtained for a length of 10 days. Table 1 shows the results for the 20
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stock markets.

Table I: Ranking of Informational E¢ ciency for di¤erent stock indexes

Rank Index Country Entropy Rank Index Country Entropy

1 TSEC Taiwan 0:9833 11 MERVAL Argentina 0:9791

2 NIKKEI Japan 0:9806 12 ATX Austria 0:9791

3 Straits Times Singapore 0:9805 13 JKSE Indonesia 0:9787

4 IPC Mexico 0:9804 14 SSMI Switzerland 0:9783

5 TASE Israel 0:9801 15 Hang Seng Hong Kong 0:9777

6 DJIA USA 0:9800 16 KLSE Malaysia 0:9769

7 AEX Holland 0:9799 17 PX GLOB Czech Rep. 0:9768

8 KOSPI South Korea 0:9795 18 RTS Russia 0:9751

9 DAX Germany 0:9794 19 CMA Egypt 0:9669

10 FTSE UK 0:9794 20 SBI 20 Slovenia 0:9481

Based on own calculations.

Notice that three Asian markets take the �rst positions as the most e¢ cient. Of

course, the stock markets of Taiwan, Japan, and Singapore are important �nancial

centers in the world. On the other hand, Mexico takes the third position. These

results con�rm those obtained by Cajueiro and Tabak (2004) (2005). In the last

positions are the ex-socialist countries as Slovenia, being the most ine¢ cient in the

group. The unique African stock market (Egypt) is also in the position 19.

The last results seem to support the hypothesis that the emerging stock mar-

kets are more ine¢ cient than developed ones. Note in particular that the ex-

socialist countries have not achieved levels of e¢ ciency similar to the more devel-
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oped European markets. The average e¢ ciency of the developed markets (0:9795),

greater that the average e¢ ciency of the emerging markets (0:9756).

When the European stock markets are analyzed, the di¤erence among the

Western and Eastern markets is clear. While the average e¢ ciency among UK,

Germany, Austria, Holland, and Switzerland is 0:9792, for Czech Republic, Russia

and Slovenia this is 0:9666.

4.4 Conclusions

The symbolic analysis and the Shannon entropy seem to be useful as a mea-

sure of informational e¢ ciency. The purpose of this chapter was to study the

hypothesis of emerging markets as more ine¢ cient than developed markets. The

ranking constructed by using di¤erent stock indices gives support to such hypoth-

esis. Note, that while more developed stock markets tend to remain in positions

with high ine¢ ciency, the emerging markets are in the lowest positions. In partic-

ular, the ex-socialist countries are in the last positions suggesting that there may

lack experience in managing stock markets.
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CHAPTER 5

The Role of E¢ ciency in Predicting Crashes

5.1 Introduction

In Chapter 2 we mentioned that the E¢ cient Market Hypothesis (EMH), at

least in its weakly version, assumes that all information provided by past prices

is already embodied in present prices. Therefore price prediction is impossible in

an e¢ cient market. The most used and common framework for stock prices has

been the random walk model. Recently, numerous research works have shown that

sometimes the stock prices present a deviation from an idealized e¢ cient behavior,

see Lo and MacKinlay (1988), and Singal (2004).

The present Chapter applies the measure of the informational e¢ ciency of stock

exchange market introduced in Chapter 3. Studying the dynamics of this measure

we are able to detect the formation of trends. In fact, if the market is e¢ cient

the new information should be immediately embodied in the prices, however if

the market is ine¢ cient, due to mispricing or anomalies (see Singal (2004)) maybe

originated in the cost of information, the cost of trading, or the limits of arbitrages,

the actual price may not re�ect the news, permitting the formation of trends. As

an example, let the price overshoot after some news; the market can follow a

decreasing trend until it returns to the fundamental price.

On the other hand, we study how ine¢ ciency a¤ects the probability of having

crashes. The idea is simple, an ine¢ cient market may present patterns because the
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available information is not immediately fully embodied in prices, however when

the information is understood by agents, prices may adjust with abrupt movements,

and the probability of having a crash by readjusting the prices to levels of e¢ ciency,

should increase. In order to detect the relation between e¢ ciency with a crash

probability, a binary model is applied.

Ever since Bachelier (1900) had proposed the Brownian motion as a model for

stock prices suggesting that the di¤erence in prices is a random process, academic

world used Brownian motion and the random walk as models for stock prices. How-

ever, empirical evidence such as the famous �stylized facts�(fat tails and volatility

clustering) and critical events like the 1987 crisis brought some scholars to study

the possibility of nonlinearity in the evolution of prices, see Hsieh (1991) (1995).

In particular, some scholars proposed the possibility of chaos, see Peters (1994)

(1996), and LeBaron (1994). A chaotic dynamics is a deterministic process that

looks like a random process, a main characteristic being that it is highly sensitive

to changes in initial conditions, see Alligood et al. (1997) for an introduction to

chaos.

One defender of the chaotic dynamics in �nance is Peters (1994) (1996), who

points out that people take decisions reacting to information in di¤erent ways and

some do not react until a trend is con�rmed clearly. The amount of information

necessary to validate a trend varies, but its uneven assimilation may cause a biased

random walk, extensively studied by Hurst in the 1940s and later in the 1960s and

1970s, Mandelbrot called it fractional Brownian motion. In more recent years the
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local Hurst exponent has been proposed as a measure of e¢ ciency. Grech and

Mazur (2004) it to measure e¢ ciency in the Dow Jones index, and they argue

that even if we cannot predict the detailed evolution scenario, we might be able

to say something else about the process. For example, the Hurst exponent seems

to be able to detect crisis. In fact, it has been widely used in detecting long-

time correlation in �nance. However authors, such as Bassler et al. (2006) and

McCauley et al. (2007) criticize this measure asserting that a value di¤erent from

1/2 (the number corresponding to a random walk process) does not necessarily

imply long time correlations like those to be found in fractional Brownian motion.

Instead of the Hurst exponent, this chapter proposes the Shannon entropy.

As it will be explained in the next section, the idea is simple: since symbolic

analysis is useful detecting the very dynamics of highly noisy time series as the

asset returns are, the use of entropy recovers the information in the series detecting

the emergence of patterns. Once the measure is constructed, a logit model is

applied in order to study the relationship between e¢ ciency and probability of a

�nancial crash.

The chapter is organized as follows. In section 5.2 we present the methodology,

the e¢ ciency measure is explained and the logit model is described. In section 5.3

we present the results for di¤erent stock markets (Japan, Malaysia, Russia, Mexico,

and USA), showing that in all cases the relationship between the probability of a

crash and the e¢ ciency is negative. In the section 5.4 further results are presented

on the global market, showing that US market is the most e¢ cient. In section 5.5
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we develop a model trying to explain the relationship between e¢ ciency and news

arrivals. Finally, in section 5.6 some conclusions are drawn.

5.2 Methodology

5.2.1 Measuring Informational E¢ ciency At �rst, we will assume that in an

e¢ cient market the current price Pt re�ects all the available information, and

thus the past prices are useless in order to predict the prices. Therefore, we will

suppose that the returns in a perfectly e¢ cient market are unpredictable. Under

the martingale measure or assuming risk neutral agents, it is allowed to assume

that the returns are independently distributed.

The measure of e¢ ciency is computed in two steps, �rst the symbolization of

the returns is applied in order to detect the very dynamics of the process, the

Shannon entropy is applied next in order to measure the quantity of information

embodied in the series.

Using the STSA we can obtain richer information from a time series if we trans-

form data series of many possible values (real-valued for instance) into a time series

of only a few distinct symbols. According to Daw et al. (2003) this coarse-graining

has the practical e¤ect of producing low-resolution data from high-resolution one.

As far as we know, few works are done applying symbolic analysis, Lawrence et al.

(1998) predict the direction of change for next day in foreign exchange rates with

an error of 47.1%. On the other hand, Schittenkopf et al. (2002) predict the daily

change in volatility of two major stock indices, they assert that symbolic informa-

tion processing is a promising approach to �nancial prediction tasks undermining
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the hypothesis of e¢ cient capital markets.

The problem of the symbolic analysis is that there is no formal way to de�ne

the time series partitions. However in our case we are interested in combinations

of negative and positive stock returns. Therefore we take zero as separative value

in these returns, and two symbols: we call "0" for negative returns, and "1" for

positive ones. In fact, we can de�ne two extreme symbolic dynamics for the asset

returns as follows. On the one hand, in a completely e¢ cient market the returns

instantaneously re�ect the news appearing as shocks and, in such case the process

is a sequence of Bernoulli processes (0s and 1s). On the other hand, if the market

is ine¢ cient the returns will not re�ect the news immediately, instead, they may

present sequences of increments (decrements) if returns under-(over-) shoot as

reaction to good news. Therefore, assume we have a time series of size T de�ned

as fr1; r2; r3; : : : ; rTg, rt being the asset returns (de�ned as the log price di¤erence)

at time t, for t = 1; 2; : : : ; T . Then, we proceed to transform the time series into a

symbolic one, according to rule 5.1.

if

8>><>>:
rt < 0 st = 0

rt > 0 st = 1

(5.1)

Thus symbolic time series fs1; s2; s3; : : : ; sTg is obtained. It is a time series

expressed in sequences of 0s and 1s, representing the decreases and increases in

prices, respectively.

On the other hand, we have a measure of uncertainty which will be our measure
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of e¢ ciency. In fact, this measure is the normalized Shannon entropy (H) achieving

its maximum value at 1 when the process is completely random (see subsection

3.2.2), and its minimum at 0, when the process is a completely certain event. The

theoretical expression for H is the equation 5.2, a particular case of the equation

3.4 propossed by Khinchin (1957)

H = �(1= log2(n))
X

pi log2 pi (5.2)

where n is the total number of sequences and pi the probability of sequencec

i, with i = 1; 2; : : : ; n.

Note that the entropy is maximum when the n sequences or events are equally

probable, p1 = p2 = p3 = : : : = pn. However, the entropy is at minimum at 0

when one event cumulates all the probability (it means this is a completely certain

event). For instance, imagine that we are computing our measure only for two

events which can happen in a day. Assume that p is the probability of having a

decrease in prices (symbol 0) and (1�p) is the probability of having an increase in

prices (symbol 1). According to the Shannon entropy the e¢ ciency will be given

by:

H = �
�

1

log2(2)

�
(p: log2(p) + (1� p): log2(1� p)) (5.3)

Note that H is a concave function and the maximum is obtained for p = 1=2

(maximum uncertainty) and the minimum is for p = 1 and p = 0. Intuitively, in

our case if the market is e¢ cient and no trend is developing, the probability of 0
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and 1 is the same. However in a �bear market�(or a �bull market�) probability of

0 (1) is greater than 1=2, highlighting the formation of a trend and thus, a lower

e¢ ciency level.

In practice, the probability of prices decreasing (p) is calculated counting the

quantity of 0s over the whole period, while (1 � p) is the number of 1s over the

total period.

In order to study the evolution in time of e¢ ciency, a time-window is selected.

In fact, a sub-period v < T is taken and shifted across time. Then, the Shannon

Entropy is computed for each time-window from moment 1 to T. As is shown in

the next section di¤erent sizes of windows are considered, 100, 240, 350, and 420

days. However as suggested by Grech and Mazur (2004), the time-window should

not be too large in order to capture the locality. We will proceed to select the

time-window that best �ts the best the logit model.

5.2.2 The Logit Model The logit and probit models are two famous models

for binary endogenous variables1. Assume there is a variable y that takes on one

of two values, 0 and 1, in the present case, �nancial crash (1) and no-crash (0).

De�ne a latent variable y� such that:

y�i = �+ �Hi + "i (5.4)

where H is the e¢ ciency measure and "i follows what is called an extreme

value distribution, see McFadden (1984).

1 See Johnston and DiNardo (1997) for an introductory discussion of the binary models.
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We do not observe y�, but rather y, which takes on values of 0 or 1 according

to the following rule:

yi =

8>><>>:
1 if y�i > 0

0 otherwise

(5.5)

In the present work, the variable y takes value 1 when the empirical distribution

of the index returns cumulates the 1% (the negative tail), and 0 otherwise.

According to Johnston and DiNardo (1997) the present logit model is given

by:

p(yi = 1) =
exp(�+ �Hi)

1� exp(�+ �Hi)
(5.6)

The equation 5.6 says that the probability of the �nancial crash in one day,

P (yi = 1) depends on the e¢ ciency level (H).

The formulation of the model (5.6) ensures that the predicted probabilities lie

between 0 and 1. The model is estimated by maximum likelihood methods.

Note that the sign pattern of the coe¢ cients is the same one is observed for the

linear model, however, calculating the change in the probability is not so simple

as it was in a linear model. The derivative of the probability of crash with respect

to the e¢ ciency (H) varies with H:

@E(y)

@H
=

exp(�+ �Hi)

(1� exp(�+ �Hi))2
� (5.7)

The logit model can be expressed in odds-ratio as in equation 5.8 which is

usually more intuitive:
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p(yi = 1)

1� p(yi = 1)
= exp(�+ �Hi) (5.8)

exp(�+�H) is the e¤ect of the independent variable (our measure of e¢ ciency)

in the �odds ratio�.

5.3 Empirical Results for Di¤erent Stock Markets

The previous methodology is used in this section, studying �ve markets in

order to �nd some facts about the relationship between the e¢ ciency and the

di¤erent crashes occurred in the past. Time series data for all the above indices

were obtained with daily frequency2, as it was mentioned before we take time-

windows (v) for 100, 240, 350, and 420 days. Then, we proceed to symbolize the

returns as it was shown in 5.1, after that we compute the normalized Shannon

entropies for each v.

5.3.1 The Japanese stock market index (Nikkei 225) Nikkei 225 is a stock

market index for the Tokyo Stock Exchange (TSE , the second largest stock ex-

change market in the world by monetary volume). The Nikkei average is the most

watched index of Asian stocks. It has been calculated daily by the Nihon Keizai

Shimbun (Nikkei) newspaper since 1971. It is a price-weighted average (the unit

is Yen), and the components are reviewed once a year.

The Japanese case was studied by Shiller et al. (1996) among others. Between

1982 and 1992 the Nikkei Index lost most of its value, after rising dramatically

2 Daily data for di¤erent stock market indices (Nikkei 225, KLSE, IPC, DJIA) where obtained
from �nance.yahoo.com, RTS index was obtained from www.rts.ru
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through the 1980s, fell from 38,915.9 on December 29, 1989 to 14,309.4 on August

18, 1992 (a decline of 63,2%).

Malkiel (2003) highlights that the prices of land and buildings started to in-

crease until levels over the fundamental values, when the agents realized about

their fundamental prices the bubble suddenly exploded.

De�ning crash as the �rst percentile of the empirical density function for the

Nikkei returns from September 17, 1985 to January 26, 2007 and considering the

evolutions of the entropy for di¤erent time-windows, a logit model is applied. The

pseudo-R2 is taken as a measure of �t in order to select an appropriated time-

window. Table 1 shows that a time-window of 240 days and words of 5 days

provides the best �t.

Note in Table 1 that the optimal time-window seems to be 240, actually using

a di¤erent methodology based on the Hurst exponent for DJIA, Grech and Mazur

(2004) found that 240, a year is a good option. Note also that when we take a

larger time-window the �t is worse. The latter happens because as the time-window

increases in size, the entropy loses its locality.

Note in Table 2 that probability of crash depends negatively on our measure

of informational e¢ ciency. The latter suggests that when the market increases its

e¢ ciency, prices tend to re�ect better the news, thus patterns are less frequent and

the crash by adjustment is less likely.

Figure 5.3.1 shows the Nikkei 225 e¢ ciency evolution, it presents the minimum

e¢ ciency for the whole period on October 13, 1987, just 7 days before famous 1987
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crash. A local minimum is obtained on September 3, 1986, just 3 days before a

crash, and September 12, 2001 (in this case, the crash is produced the same day).

Table 1: The Pseudo R2 in di¤erent Logit Model speci�cations for Nikkei 225

Sequences v = 100 v = 240 v = 350 v = 420

2-days 0.0054 0.0039 0.0011 0.0012

3-days 0.0029 0.0039 0.0011 0.0011

4-days 0.0037 0.0052 0.0014 0.0016

5-days 0.0040 0.0089* 0.0013 0.0013

The logit model was estimated using the e¢ ciency measure as independent variable,

taking di¤erent sequence or combination of days (2, 3, 4, 5) and di¤erent time-

windows (100, 240, 350, and 420 days). 16 models were estimated in total.

* The maximum Pseudo R2 is shown in darker characters and highlights the logit

model speci�cation (time-window and sequence) which �ts the best.

Source: Own Calculations
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Table 2: The Logit Model for Nikkei 225 (Japan)

Observations: 5256

p(yt = 1) =
exp(�+ �Ht)

1� exp(�+ �Ht)
LR Chi2(1): 5.25

Prob>Chi2 = 0.022(a)

Log Likelihood =-293.74 Pseudo-R2 = 0.0089

Crash Prob.(c) Coe¢ cients Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy (�) -27.11 11.29 -2.40 0.02(b)

Constant (�) 21.85 10.99 1.99 0.05(b)

Crash Prob.(c) Odds-Ratio Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy 1.68E-12 1.9E-11 -2.4 0.016(b)

The results were obtained with STATA program.

(a) Indicates that the model is signi�cative at 5%. (b) Indicates that the

coe¢ cients are signi�cative at 5%. (c) Is the estimation of equation 5.6.

(d) The model expressed in odds-ratio as in equation 5.8

Source: Own Calculations
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Daily E¢ ciency Evolution for Nikkei

5.3.2 The Malasyan stock market index (KLCI) The Kuala Lumpur Compos-

ite Index (KLCI) is the main stock market index containing 100 companies from

the main board, and is now one of the three primary indices for the Malaysian stock

market the �Bursa Malaysia�previously known as Kuala Lumpur Stock Exchange

(KLSE).

According to Chowdhry and Goyal (2000) the �nancial crisis of East Asia in

1997 was unanticipated and made asset prices and currency values fall in several

countries simultaneously.

Five countries were mainly a¤ected (Indonesia, Malaysia, Philippines, South

Korea, and Thailand). The event that triggered the crisis in East Asia was the

announcement on July 2, 1997 that Thai Baht would be allowed to �oat.

Using the same procedure, Table 3 shows the optimal time-window, and opti-
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mal sequence, according to the Pseudo-R2 of the logit model. Note in this case, the

best model �ts for a time-window of 100 days, this is not a problem, as Grech and

Mazur (2004) assert, sometimes di¤erent markets can have di¤erent time-window

lengths3. This fact could indicate that this market assimilates the information in

a faster way respect to the Japanese market.

As in the Japanese case, the e¢ ciency a¤ects negatively the probability of

having a crash in the Malaysian stock market.

Note in Figure 5.3.2 that minimum is obtained on August 11, 1998 and a crash

is produced on September 8, 1998.

3 Actually, they suggest that the Warsaw market has a time length di¤erent from the US
market.
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Table 3: The Pseudo R2 in di¤erent Logit Model speci�cations for KLCI

Sequences v = 100 v = 240 v = 350 v = 420

2-days 0.1202* 0.1062 0.0985 0.0645

3-days 0.1178 0.1133 0.1046 0.0694

4-days 0.1040 0.1145 0.1080 0.0717

5-days 0.0954 0.1011 0.1058 0.0664

The logit model was estimated using the e¢ ciency measure as independent variable,

taking di¤erent sequence or combination of days (2, 3, 4, 5) and di¤erent time-

windows (100, 240, 350, and 420 days). 16 models were estimated in total.

* The maximum Pseudo R2 is shown in darker characters and highlights the logit

model speci�cation (time-window and sequence) which �ts the best.

Source: Own Calculations
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Table 4: The Logit Model for KLCI (Malaysia)

Observations: 2716

p(yt = 1) =
exp(�+ �Ht)

1� exp(�+ �Ht)
LR Chi2(1): 37.49

Prob>Chi2 = 0.000(a)

Log Likelihood =-137.2 Pseudo-R2 = 0.1202

Crash Prob.(c) Coe¢ cients Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy (�) -43.03 6.41 -6.71 0.00(b)

Constant (�) 37.19 6.13 6.06 0.00(b)

Crash Prob.(c) Odds-Ratio Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy 2.05E-19 1.31E-18 -6.71 0.00(b)

The results were obtained with STATA program.

(a) Indicates that the model is signi�cative at 5%. (b) Indicates that the

coe¢ cients are signi�cative at 5%. (c) Is the estimation of equation 5.6.

(d) The model expressed in odds-ratio as in equation 5.8

Source: Own Calculations
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Daily E¢ ciency Evolution for KLSE

5.3.3 The Russian Stock Index, The Russian Trading System index (RTS) The

Russian Trading System is a stock market established in 1995 in Moscow, consoli-

dating various regional trading �oors into one exchange. At the moment RTS is in

the process of reorganization, it is being transformed into a joint-stock company.

According to Sutela (2000) the Russian crisis was connected with the earlier

Asian crisis, and sent shock waves across global �nancial markets. In August

1998, Russia experienced a currency crisis combined with banking crisis and debt

crisis. In August short-term capital started to leave the country and the exchange

rate RUR/USD passed from 6 to 20-25. However, the Moscow Stock Exchange

started to decline since October 1997. In fact, before the crashes in August 27,

1998 (-18.78%) and May 12, 1999 (-17,66%) there was another important crash

on October 28, 1997 (-21.10%). We take daily data from September 1, 1995 to
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August 23, 2006 and apply the same method.

In the Russian crash the model seems to have a high signi�cance. It shows

that e¢ ciency a¤ects negatively the probability of crashes (Tables 5 and 6).

Figure 5.3.3 shows that a minimum is produced on August 1997 and then

crashes are produced on October 1997, January 1997 and August 1998. Minimum

for all the period is produced on May 15, 2006 and crashes are produced on May

20, 2006 and June 13, 2006.

Table 5: The Pseudo R2 in di¤erent Logit Model speci�cations for the RTS

Sequences v = 100 v = 240 v = 350 v = 420

2-days 0.0549 0.0538 0.0181 0.0179

3-days 0.0635 0.0863 0.0463 0.0442

4-days 0.0662 0.1057 0.0659 0.0611

5-days 0.0523 0.1126* 0.0745 0.0743

The logit model was estimated using the e¢ ciency measure as independent variable,

taking di¤erent sequence or combination of days (2, 3, 4, 5) and di¤erent time-

windows (100, 240, 350, and 420 days). 16 models were estimated in total.

* The maximum Pseudo R2 is shown in darker characters and highlights the logit

model speci�cation (time-window and sequence) which �ts the best.

Source: Own Calculations
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Table 6: The Logit Model for the RTS (Russia)

Observations: 2322

p(yt = 1) =
exp(�+ �Ht)

1� exp(�+ �Ht)
LR Chi2(1): 29.05

Prob>Chi2 = 0.000(a)

Log Likelihood =-114.5 Pseudo-R2 = 0.113

Crash Prob.(c) Coe¢ cients Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy (�) -83.30 16.56 -5.03 0.00(b)

Constant (�) 75.35 15.77 4.78 0.00(b)

Crash Prob.(c) Odds-Ratio Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy 6.63E-37 1.10E-35 -5.03 0.00(b)

The results were obtained with STATA program.

(a) Indicates that the model is signi�cative at 5%. (b) Indicates that the

coe¢ cients are signi�cative at 5%. (c) Is the estimation of equation 5.6.

(d) The model expressed in odds-ratio as in equation 5.8

Source: Own Calculations

In the Russian crash the model seems to have a high signi�cance. It shows

that e¢ ciency a¤ects negatively the probability of crashes.
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Daily E¢ ciency Evolution for RTS

5.3.4 The Mexican Stock Market Index, Indice de Precios y Cotizaciones (IPC)

The Indice de Precios y Cotizaciones (IPC) is computed by The Bolsa Mexicana

de Valores or BMV, the Mexico�s only stock exchange. It is the second largest

Stock Exchange in Latin America, behind the São Paulo Stock Exchange.

Here it is interesting to analyze if the crisis in 1994 was originated in a high

period of ine¢ ciency. Mexico had su¤ered other crisis in 1982, however the Tequila

Crisis is famous for being the �rst global crisis a¤ecting other stock markets.

According to Calvo (1996), by the end of 1994 the country was susceptible

to speculative attacks. In fact, he marks that the crisis started to develop in

February/March 1994. The curious thing is just a few month, if not days before

the collapse, there was a strong consensus that Mexico had �nally graduated into

the �rst world.
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Note in Figure 5.3.4 a minimum is obtained on February 10, 1994 after crashes

on 4 and 20 April, 1994, January and February 1995. Note also that this is a

very low level of e¢ ciency (around 0.8, even the lowest comparing with the other

markets) indicating the formation of strong patterns.

The result is always the same, Table 7 shows an optimal time-window at 100

days and the Table 8 shows that the probability of having a crash depends nega-

tively on informational e¢ ciency.

Table 7: The Pseudo R2 in di¤erent Logit Model speci�cations for the IPC

Sequences v = 100 v = 240 v = 350 v = 420

2-days 0.0050 0.0004 0.0006 0.0009

3-days 0.0066 0.0017 0.0029 0.0042

4-days 0.0069 0.0034 0.0057 0.0066

5-days 0.0159* 0.0089 0.0079 0.0066

The logit model was estimated using the e¢ ciency measure as independent variable,

taking di¤erent sequence or combination of days (2, 3, 4, 5) and di¤erent time-

windows (100, 240, 350, and 420 days). 16 models were estimated in total.

* The maximum Pseudo R2 is shown in darker characters and highlights the logit

model speci�cation (time-window and sequence) which �ts the best.

Source: Own Calculations
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Table 8: The Logit Model for the IPC (Mexico)

Observations: 3376

p(yt = 1) =
exp(�+ �Ht)

1� exp(�+ �Ht)
LR Chi2(1): 6.06

Prob>Chi2 = 0.014(a)

Log Likelihood =-187.13 Pseudo-R2 = 0.0159

Crash Prob.(c) Coe¢ cients Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy (�) -16.06 6.33 -2.54 0.01(b)

Constant (�) 10.36 5.86 1.77 0.08(b)

Crash Prob.(c) Odds-Ratio Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy 1.06E-07 6.72E-07 -2.54 0.01(b)

The results were obtained with STATA program.

(a) Indicates that the model is signi�cative at 5%. (b) Indicates that the

coe¢ cients are signi�cative at 5%. (c) Is the estimation of equation 5.6.

(d) The model expressed in odds-ratio as in equation 5.8

Source: Own Calculations
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Daily E¢ ciency Evolution for IPC

5.3.5 The US Stock Market index, Dow Jones Industrial Average (DJIA) The

Dow Jones Industrial Average (DJIA) was created by Charles Dow, the Wall Street

Journal editor, and the Dow Jones & Company co-founder. Dow compiled the

index as a way to gauge the performance of the industrial component of America�s

stock markets. It is the oldest continuing US market index, and consists of 30 of

the largest and most widely held public companies in the US.
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Table 9: The Pseudo R2 in di¤erent Logit Model speci�cations for the DJIA

Sequences v = 100 v = 240 v = 350 v = 420

2-days 0.0002 0.0004 0.0012 0.0004

3-days 0.0000 0.0001 0.0010 0.0002

4-days 0.0001 0.0000 0.0000 0.0000

5-days 0.0020* 0.0002 0.0003 0.0008

The logit model was estimated using the e¢ ciency measure as independent variable,

taking di¤erent sequence or combination of days (2, 3, 4, 5) and di¤erent time-

windows (100, 240, 350, and 420 days). 16 models were estimated in total.

* The maximum Pseudo R2 is shown in darker characters and highlights the logit

model speci�cation (time-window and sequence) which �ts the best.

Source: Own Calculations

The results are similar to the previous one (Tables 9 and 10), an increase in the

informational e¢ ciency produces a reduction in the probability of having a crash.

However, the coe¢ cients of the model are not so signi�cative, maybe because the

US market is very e¢ cient and then the econometric model hardly captures the

relation between ine¢ ciency and crash (Figure 5.3.5).
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Table 10: The Logit Model for the DJIA (USA)

Observations: 6412

p(yt = 1) =
exp(�+ �Ht)

1� exp(�+ �Ht)
LR Chi2(1): 1.44

Prob>Chi2 = 0.2296

Log Likelihood =-357.82 Pseudo-R2 = 0.0020

Crash Prob.(a) Coe¢ cients Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy (�) -8.31 6.91 -1.20 0.230

Constant (�) 3.28 6.55 0.50 0.617

Crash Prob.(b) Odds-Ratio Stand. Error.(�) t=coe¤./� p-value>jtj

Entropy 0.0002467 0.001706 -1.20 0.230

The results were obtained with STATA program.

(a) Is the estimation of equation 5.6. (b) The model expressed in

odds-ratio as in equation 5.8. Source: Own Calculations
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Daily E¢ ciency Evolution for DJIA

5.4 Global E¤ect

The purpose of this section is to study the relationship between the crash

probability and the informational e¢ ciency in the global market by introducing a

logit model. This model considers the �ve markets in the same periods as shown

in equation (5.9). Four dummy variables are introduced for the countries (MEX,

MAL, JAP, RUS) in order to recover the structural di¤erences among the countries.

The crash is de�ned by taking all the returns in the markets and de�ning a common

limit where the returns cumulate 1% of the frequency, it happens at -0.0441. On

the other hand, we consider time-windows of 100, 240, 350, and 420 days and

words of 2, 3, 4, and 5 days. The minimum Akaike was obtained for a window of

350 days and 5 days sequence, the Table 11 shows the results.
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p(y = 1) = exp(�+�0H+�1MEX+�2MAL+�3JAP+�4RUS)
1�exp(�+�0H+�1MEX+�2MAL+�3JAP+�4RUS)

(5.9)

Note that the sign of the e¢ ciency is the correct, an increase in the informa-

tional e¢ ciency reduces the global probability of having a crash. On the other

hand, since USA is the variable of control, the other signs are compared with this

country.
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Table 11: Logit Model for the Five Stock Markets

Observations =11552

p(y = 1) = exp(�+�0H+�1MEX+�2MAL+�3JAP+�4RUS)
1�exp(�+�0H+�1MEX+�2MAL+�3JAP+�4RUS)

LR Chi2(5) = 235.27

Prob>Chi2 0.0000(a)

Log Likelihood = -801.75 Pseudo-R2 = 0.1280

Crash Prob.(c) Coe¢ cients Stand. Error (�) t=coe¤./� p-value>jtj

E¢ ciency (�0) -55.07 8.56 -6.44 0.000(b)

MEX (�1) 0.67 0.48 1.41 0.160

MAL (�2) 1.01 0.46 2.18 0.029(b)

JAP (�3) 0.79 0.50 1.58 0.113

RUS (�4) 2.41 0.43 5.56 0.000(b)

Constant (�) 48.60 8.48 5.73 0.000(b)

The results were obtained with STATA program.

(a) Indicates that the model is signi�cative at 5%. (b) Indicates that the coe¢ cient are signi�cative

at 5%. (c) is the estimation of equation 5.9.

Source: Own Calculations

From Table 11 we can deduce that our hypothesis in the section before seems to

be true, note that the US market is the most structural e¢ cient market, jumping

from the US market to a di¤erent market increases the probability of having a

crash, being Russia (RUS) the most structurally ine¢ cient stock market in the

period. The latter result can be explained by the fact that the Russian stock
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market is the youngest, established in the 1995, as it was mentioned in subsection

5.3.3. This also agrees with the results obtained in the Chapter 4 where eastern

European stock markets presented the lowest e¢ ciency.

5.5 Theoretical relation between E¢ ciency and News arrival

In this section we will try to give an explanation about the relation between

news arrival and information e¢ ciency and how it might be determining the

crashes. As mentioned above, an informational e¢ cient market should immedi-

ately assimilate the news arrivals, hence no pattern in prices should be formed.

Many scholars has considered the random walk process in order to modelling asset

prices. We will assume that if the market is completely e¢ cient the probability

of having a positive or negative return tomorrow should be the same, it means

1/2. In terms of our entropic measure of e¢ ciency should produce the maximum

entropy as in the following equation:

H(t) = �
��
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It means that e¢ ciency always will be the maximum (1) because there is no

reason for predicting a negative or positive return tomorrow. Consider now, a

process "t, representing the news arrivals in the market. If they are good news

then probability of having positive returns tomorrow should increase, on the other

hand if they are bad news the probability of having negative returns tomorrow

should increase. However, in an e¢ cient market this e¤ect should be assimilated
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the following day. It means, the news arrive and the market can "forecast" the

returns at least that day, of course in our model the e¢ ciency decreases for that day

because probability of having positive or negative returns increases, nonetheless the

news should be assimilated and the following day the e¢ ciency come back to the

maximum value (1).

Consider that news arrivals are independent and identically distributed as a

Poisson process with parameter �:

u(t) is i.d.d:Poisson(�)

This news will a¤ect the e¢ ciency as a noise normalized by a parameter, re-

ducing the e¢ ciency for once and then the e¢ ciency recovers its maximum value.

Note that u(t) takes value 0 or 1, however the e¤ect of the news in the e¢ ciency

should not be larger than 1/2, then we de�ne "(t) = �u(t); where � is the impact

in the e¢ ciency. Therefore we can rede�ne our e¢ ciency measure under news

arrivals:

H(t) = �
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Note that log2
�
1
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�
= log2(1 + 2"(t)) � 1 ' 2log2(e)"(t) � 1; similarly

log2
�
1
2
� "(t)

�
' �2log2(e)"(t) � 1: Then, our measure can be approximated as

the following equation:

H(t) ' H�(t) = 1� "(t)2
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where  = 4log2(e); now the relation is clear, in an e¢ cient market the e¢ -

ciency should be always equal to 1 (the maximum), however when news arrive,

they a¤ect the e¢ ciency for once and the e¢ ciency comes back to its maximum

level because new information is immediately assimilated.

The following Figure is a simulation of this process for T = 1000, � = 0:002;

and � = 0:005.

In the example of 1000 days, only four news arrived to the market. Note, that

the e¢ ciency is impacted by the news only for once, and then it recovers achieving

its maximum level.

Assume now that news arrivals are not well understood and so they arrive in

the form of an autorregressive process:

"(t) = �"(t� 1) + �u(t)

where �u(t) is again the Poisson process of information arrival corrected by the

impact factor �: On the other hand, � is the autorregressive coe¢ cient less than 1
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which de�nes the memory of the process.

Note that now the information is not well embodied and then ine¢ ciency

remains for more time. Note also that the e¢ ciency was recovering from the

second news impact and before arriving to the maximum levels some news arrive

impacting a third time the e¢ ciency. In order to obtain a more realistic approach

to the e¢ ciency evolution, assume that the e¢ ciency is also a¤ected by the absolute

value of random and exogenous factor  (t); normal distributed with mean equal

to 0 and variance � , now our stochastic system is the following:

H(t) ' H�(t) = 1� "(t)2 � j (t)j

"(t) = �"(t� 1) + �u(t)

Simulating the model for T = 1000, � = 0:005; � = 0:002; � = 0:002;

� = 0:95; we obtain the following �gure.
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Note that now, the evolution of the e¢ ciency is similar to the results obtained

for real data. Therefore, we can say that a great part of the ine¢ ciency can arrive

from the arrival of not well understood news.

5.6 Conclusions

For long time the EMH has been the central proposition in Finance. Jensen

(1978) a¢ rmed that there was no other proposition in economics which had more

solid empirical evidence supporting it than the EMH. However, many scholars

started to show that the market not always behaves in this manner, sometimes

presenting mispricing or anomalies, see Singal (2004).

Considering the possibility of �nding deterministic chaos in the �nancial mar-

kets, or at least fractal Brownian motion some authors proposed the Hurst expo-

nent as a measure of the e¢ ciency, see Peters (1994) (1996). Even more, Grech and

Mazur (2004) propose to use the Hurst exponent for measuring the evolution of

the e¢ ciency through the time. Some other authors, such as Bassler et al. (2006)
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and McCauley et al. (2007) criticize this measure asserting that Hurst exponent

does not necessarily detect long time correlations like those found in fractional

Brownian motion.

In the present chapter we applied the measure introduced in chapter 3 in

order to study the evolution of the informational e¢ ciency through the time. As

explained in chapter 3, the intuitive idea is simple, using STSAwe try to recover the

very dynamic of the process and later by applying the entropy we try to measure

the quantity of information embodied in the sample. In order to study the evolution

of the previous measure we take a time-window, the local entropy for the symbolic

series is computed obtaining a daily time series of e¢ ciency. A logit model is

applied in order to study the relationship between the informational e¢ ciency

and the probability of having a crash. Using data for the Japanese, Malaysian,

Russian, Mexican, and US markets, the informational measure is computed and

a logit model is applied. The appropriated time-windows seem to be di¤erent

among country but going from half a year to a trading year. This fact could be

re�ecting how much fast the market reacts or assimilates the new information. On

the other hand, the results of the logit models are always the same, the lower the

informational e¢ ciency, the higher the probability of having a crash. It means that

a market presenting a short-time trend ("bull" or "bear") will produce a reduced

local entropy (because some patterns will be more frequents). The results also

seem to con�rm that US market is the most e¢ cient, being the Russian market

the most ine¢ cient, because it is also the youngest, starting to work in 1995. This
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result agrees with conclusion obtained in chapter 4 about the Russian market as

the most ine¢ cient. This measure could be useful as a tool in controlling the daily

evolution of informational e¢ ciency not only in the stock markets but also in the

exchange market, for instance trying to forecast the proximity of a devaluation.
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CHAPTER 6

E¢ ciency Across the Stock Market

6.1 Introduction

The purpose of this chapter is to study how the information expands through a

given stock market. In an e¢ cient market, the news a¤ecting a particular company

should be immediately embodied in all the related companies, moving the �rms

in the same direction. Suppose that Intel announces a powerful new processor,

the news should make the stock prices increase in Intel but also in companies

producing computers (IBM, Hewlett-Packard), and companies producing software

(i.e. Microsoft). However, if the market is ine¢ cient the companies may not

understand the news, and information could be incorporated at di¤erent moments.

In order to study the e¢ ciency across the market a methodology is developed.

The method is based on the symbolic analysis explained before and the graph

theory (in especial the Minimal Spanning Tree (MST) and the Hierarchical Tree

(HT) are modi�ed). We try to study the structure and dynamics of the stock

market, if the market is e¢ cient it should present clusters of related companies.

These groups of �rms react to the information moving in the same way. However,

an ine¢ cient market should present no cluster inside, since information is embody

at di¤erent times.

The structure of the chapter is as follows. In the section 6.2 the methodology

is introduced, the new things are two; On the one hand, we are able to study



100

the structure of the market using information from more than one variable, on

the other hand we can study di¤erent scenarios, for instance we can analyze the

structure in a normal situation and in a extreme situation. The section 6.3 tries

to establish the importance of the relation between stock prices and volume trade,

we will use these variables later, in the study of the stock markets. Section 6.4 is

an empirical application to the US stock market, and section 6.5 is an application

to the Italian Stock market. Finally, section 6.6 draws some conclusions.

6.2 Multidimensional Symbolic Minimal Spanning Tree (MSMST)

6.2.1 Introduction to Taxonomy The �rst systematic classi�cation of objects

and things comes from Biology, and more precisely the Zoology. The classi�cation

of living beings in di¤erent classes according to the "natural system" is due to

Linneo. All the classi�cations try to separate the individuals in classes or groups

in such a way that individuals belonging to the same group are "similar" among

them and "di¤erent". The concepts of "similarity" and "di¤erent" are not de�ned

in a precise form, but everybody understand what they refer. It is clear that a

frog is "similar" to a toad, and "di¤erent" from a rabbit, even when we know

that also frogs and toads are di¤erent. This science of classifying living organisms

is called Taxonomy. The present Chapter will introduce a methodology in order

to determine the taxonomy of a set of elements by using symbolic analysis. The

�exibility advantage of symbolic method will permit us to determine the structure

of a set of elements in di¤erent situations and use many variables.
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6.2.2 Minimal Spanning Tree and Hierarchical Tree Mantegna (1999) pro-

posed to study the structure and taxonomy of the stock markets by constructing

the Minimal Spanning Tree (MST) and Hierarchical Tree (HT). These trees come

from the Graph Theory, a mathematical study of the properties of the formal

mathematical structures called graphs. A graph, denoted by G, is a mathematical

object composed of points, known as vertices or nodes, and lines connecting them,

known as edges. Trees are one of the most important types of graphs with many

applications (i.e. family trees, organization charts, electrical networks, and often

railway lines). Note that such a graph is a tree if and only if there is a unique

simple path between any two of its vertices. A spanning tree is a tree containing, or

spanning, all the N vertices of the graph, and therefore it must have N � 1 edges.

The MST is the smallest such tree in a connected weighted graph, constructed so

that the sum of all edge weights is at minimum. There exist two popular algo-

rithms for the MST problem, the Kruskal�s and the Prim�s algorithms. Onnela

(2002) describes a pseudo-code for the Kruskal�s algorithm, it is shown in Table 1
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Table 1: Kruskal�s algorithm for Minimum Spanning Tree

begin Kruskal;

sort edges so that !(e1) � ::: � !(eK);

LIST=;;

while jLISTj< N � 1 do

begin

if the next edge ei does not create a cycle then add it to LIST

else discard it

end;

end;

Where N are the number of elements, ei is for edge i, and !(ei) is the weight of edge i

These trees present a net among the di¤erent elements, highlighting the rele-

vant connections among them, and the most important clusters. A metric distance

is necessary in order to obtain this taxonomic representation; i.e., a function d

de�ned for each pair of time series that takes values in R such that:

1. d(i; j) � 0 8i; j

2. d(i; j) = 0 if and only if i = j

3. d(i; j) = d(j; i) 8i; j

4. d(i; j) � d(i; k) + d(k; j) 8i; j; k
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Computing all the distances between elements permits to construct the dis-

tance matrix D. This symmetric matrix determines the minimal spanning tree

connecting the n elements of a set showing the most relevant connections. The

methodology proposed by Mantegna (1999) for studying the �nancial markets, is

based on the Pearson correlation coe¢ cient and the distance function proposed by

Gower (1966). Equation 6.1 is the Pearson correlation coe¢ cient.

�ij =
hrirji � hrii hrjiq�

hr2i i � hrii
2� �
r2j�� hrji2� (6.1)

where ri and rj are the asset returns of �rms i and j. This coe¢ cient is a temporal

average performed on all the trading days of the investigated time period. By

de�nition, �ij can vary from �1 (completely anti-correlation) to 1 (completely

correlation). Gower (1966) proposes to compute the distances between companies

by using the correlation coe¢ cient presented in 6.1. Equation 6.2 is the distance

propossed by Gower.

d(i; j) =
q
2(1� �ij) (6.2)

The next step is to use these distances to construct the distance matrix D, a

symmetric matrix which shows all the distances among the di¤erent companies or

elements of the set. This matrix permits to construct the Minimal Spanning Tree

(MST) connecting the set of time series. The MST is progressively constructed

by linking all the time series together in a graph characterized by a minimal dis-

tance between time series, starting with the shortest distance. This method is the

Kruskal�s algorithm also called single linkage (nearest neighbor) presented in Table
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1.

In the �rst step, we choose the pair of time series with the nearest distance

and we connect them. In the second step we also connect a pair with the second

nearest distance with a line proportional to the distance. In the third step we also

connect the nearest pair that is not connected by the same tree. We repeat the

third step until all the given companies are connected in a unique tree. MST is

attractive because provides an arrangement of asset returns which selects the most

relevant connections of each element of the set.

The MST permits to obtain the subdominant ultrametric distance matrix d<.

This matrix, as Mantegna (1999) asserts can be constructed from the ultrametric

distance d<(i; j). According to Mantegna (1999) and Mantegna and Stanley (2000)

the subdominant ultrametric distance d<(i; j) between i and j is the maximum

value of any Euclidean distance dk(l;m) detected by moving in single steps from

i to j through the shortest path connecting i and j in the MST. The ultrametric

distance d< is used to construct the Hierarchical Tree (HT). One method to obtain

d<(i; j) directly from the distance matrix dk(i; j) is through the MST method as

described in Ramal et al. (1986). From the MST, the distance d<(i; j) between

two companies i and j is given by

d<(i; j) =Max fdk(wi;wi+1); 1 � i � n� 1g (6.3)

where f(w1;w2); (w2;w3); : : : ; (wn�1; wn)g denotes the unique path in the MST

connecting i and j, where w1 = i and wn = j. Note the following property is
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Figure 6.1: Example of MST and distances

satis�ed in the ultrametric distances.

d<(i; j) � max fdk(i; l); dk(l; j)g (6.4)

For instance, assume that Figure 6.1 is a MST between 4 elements where links

are the minimal distance among elements as explained before. As Onnela (2002)

asserts that an optimal portfolio can be constructed by choosing the points that

are as far from each other as possible, which is equivalent to choosing those points

that span the maximal volume in this space. In this case, note that ultrametric

distance d<(i; j) = d(h; j) = 3. From these trees we can obtain both geometrical

(throughout the MST) and taxonomic (throughout the hierarchical tree) informa-

tion of the correlation present between the elements of the set. This methodology

has demonstrated useful insights on the global structure, taxonomy and hierarchy

in the dynamics of the �nancial data, specially on the stock markets, but also in

the exchange markets. (see Ortega and Matesanz (1999), Mantegna (1999), Kaski

et al. (2003), Mizuno et al. (2006), Bonanno et al. (2001), Bonanno et al. (2004)).

In the next section we modi�ed this methodology in order to embody information

from more than one variable, and study di¤erent scenarios.
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6.2.3 Multidimensional Symbolic Minimal Spanning Tree (MSMST) As ex-

plained above, the original methodology was proposed by Mantegna (1999) in order

to study structure and hierarchy in the �nancial markets. The present section is an

extension of the latter method, trying to give more �exibility to this methodology

by using Symbolic Analysis. As far as we know, until now the method suggested

by Mantegna (1999) uses only one variable in order to obtain the structure and

taxonomy of the stock markets and analyses only one scenario. Actually, every

work using MST in �nancial markets basically focuses on �nancial returns. How-

ever, we may loss information if more than one variable were important in the

construction of the �nancial market structure. No method has been applied in

order to derive the MST incorporating information from more than one variable.

Nonetheless, as it will be explained later, many works show that there exists a

relationship between returns and trading volume. In the Wall Street tradition

is well known that it takes volume in order to move the prices, highlighting the

existence of a positive correlation between trading volume and absolute value of

returns. Even more, it seems that in "bull market" the volume is heavy and it

is light in "bear markets" suggesting a positive correlation between returns and

volume trading. Since volume trading seems to give important information to the

market, the introduced methodology aims to embody information providing not

only from returns but also from volume trading. With this purpose, this section

generalizes the Minimal Spanning Tree introduced in the previous section, into a

Multidimensional Symbolic Minimal Spanning Tree (MSMST).
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Basically, we modi�ed the distance used in order to construct the MST. As

will be explained later, the euclidean distance is applied after an appropriated

symbolization of the dataset.

Assume that in the construction of certain structure is important to consider

the following multidimensional time series for each element i:

fXigt�Tt=1 =

8>>>>>>>>>><>>>>>>>>>>:

0BBBBBBBBBB@

xi1

yi1

:

zi1

1CCCCCCCCCCA
;

0BBBBBBBBBB@

xi2

yi2

:

zi2

1CCCCCCCCCCA
; :::;

0BBBBBBBBBB@

xiT

yiT

:

ziT

1CCCCCCCCCCA

9>>>>>>>>>>=>>>>>>>>>>;
(6.5)

Of course, time series 6.5 is continuous measure but we can pass to one-

dimensional symbolic space S, by de�ning a determined partition in the multidi-

mensional space Rn, obtaining the following symbolic time series for each element

i:

fsi1; si2; :::; siTg (6.6)

The key step in applying symbolization to time series measurements involves

transforming the original values into a sequence of symbols. Daw et al. (2003)

highlight that symbolizations permits to reduce noise in highly contaminated time

series, and of course, asset returns are not the exception. Therefore, we have to

select the partition which will de�ne the regions assigning a symbol to each mea-

surement according to the region on which it falls into. In words, if we start with a

given set of measurements fx1; x2; : : : ; xt; : : : ; xTgmade up of vectors xt 2 D � Rq,
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for t = 1; 2; : : : ; T and the state space Rq is endowed with a suitable partition,

then, we transform the sequence of data fx1; x2; : : : ; xt; : : : ; xTg into the sequence

of symbols s1s2 : : : st : : : sT , where st = s if and only if xt belongs to the regime

region labeled by s. This converts the original signal into a symbolic sequence,

from which the symbol sequence statistics can be estimated. This process of trans-

formation of data into a symbolic sequence is called symbolization in the Symbolic

Time Series Analysis (STSA) literature and can be done in several ways. For

example, the simplest scheme is to assign values of 0 and 1 to each observation

depending on whether it is above or below some critical value (binary partition).

In some applications, we can de�ne discretization partitions such that 1) the oc-

currence frequency of any particular symbol is equiprobable with all others (see

Tang and Tracy (1997)), or 2) the measurement rage covered by each region is

equal (see Tang and Tracy (1997)). In some cases the context of the problem or

the underlying economic interpretation dictates a natural choice for partitions.

Once the symbolic time series is obtained for each element, procedure intro-

duced in Brida and Risso (2007) is applied in order to derive Minimal Spanning

Tree and Hierarchical Tree. It means, after symbolization, it is possible to de�ne

a simple distance as follows:

d0(si; sj) =

vuutt=TX
t=1

(sit � sjt)2 (6.7)

Note that fsitgt=Tt=1 and fsjtg
t=T
t=1 are two symbolic sequences for companies i and j

respectively. Once the distance are computed the distance matrixD is constructed.
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Figure 6.2: Relation de�ning a partition in a bidimensional space.

It is a symmetric matrix which shows all the distances among the di¤erent elements

of the set. This matrix permits to construct the Minimal Spanning Tree (MST)

connecting the set of time series. The MST is progressively constructed by linking

all the time series together in a graph characterized by a minimal distance between

time series, starting with the shortest distance, as explained in subsection 6.2.3.

Consider now a bidimensional problem in order to clarify the method, X and

Y are relevant in order to explain the structure of a set of n elements. Assume

for instance, that it is known a relationship between X and Y given by function

y = f(x), this function maybe useful as a proper partition in order to symbol-

ize the bidimensional space. In Figure 6.2 is presented an example of a possible

symbolization by using this relation as partition of the space.

It is possible to obtain an unidimensional time series by putting a symbol when

(x; y) are below the curve y = f(x) and another symbol when (x; y) are above the

function, de�ning two regimes I and II. Transformation can be done by using the

following expression:
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si =

8>><>>:
0 if (xi; yi) 2 I

1 if (xi,yi) 2 II

(6.8)

Note that also here di¤erent scenarios can be analyzed, for instance in the

latter example it is possible to put the partition for a curve that takes less values

of X and Y weighting more the small values in the regime I.

6.2.4 Concepts characterizing the Trees Some concepts used to characterize

the dynamic asset trees are introduced in this subsection:

Total and Normalized tree length One important measure is the Total tree

length, which is calculated by summing up the weights on all edges and is a measure

of concentration and expansion of the structure. However, in order to compare

lengths between di¤erent portfolios or economies with non-equal number of stock,

it is useful to normalize the quantity by N � 1, the number of edges. L(t) is the

normalized tree length at the moment t.

L(t) =
1

N � 1
X

d(i;j)2T t
d (i; j) (6.9)

where d(i; j) is the distance between i and j belonging to the MST (T t) at the

moment t. In the present work this measure will be used in order to study the

concentration of the market structure through the time. The more contracted the

MST the smaller will be the normalized tree length, in this case, it is likely that

all the companies react to the new information in the same way. Note that as the

L(t) decreases the stock markets will tend to move together in the same way, i.e.
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L(t) = 0 indicates that all the elements move in the same direction. Onnela (2002)

noted that this measure is related with risk market. Actually, the length of the tree

decreases as the stocks become more closely packed together and, consequently, the

diversi�cation potential reduces, meaning an increased risk for the minimum risk

portfolio. The behavior is reversed when the stock are more spread out on the tree.

Single-step survival ratio The robustness of Dynamic asset trees may be stud-

ied by examining the short term persistence or survival of edge connections be-

tween two consecutive frames, a concept that is known as the single-step survival

ratio. This means taking two consecutive trees T t and T t�1, physically separated

by the step length �T , investigating which connections are found in both trees.

In practice, it is calculated as the fraction of connections found in both trees.

Mathematically it may be expressed as follows:

�(t) =
1

N � 1
��Et \ Et�1�� (6.10)

Where Et is the set of edges that make up the graph at time t, the operator \

gives the intersect of two or more sets and the j:::j operator gives the number of

elements in the set of edges.

Multi-step survival ratio A natural extension of the latter measure is to in-

vestigate the survival ratio of connections over time periods longer than one time

step. Note that as more time steps are taken, more births and deaths occur and

the graphs should become more dissimilar. The di¤erence with the latter indicator
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is that the single-step survival ratio can be used to study the robustness of graphs,

the multi-step survival ratio describes the long-term behavior of connections, and

is used to study graph evolution.

�(t; k) =
1

N � 1
��Et \ Et�1 \ ::: \ Et�k�� (6.11)

6.3 Importance of Volume and Price Change

Karpo¤ (1987) reviews previous research on the relation between price changes

and trading volume in �nancial markets. In general, the article shows two empir-

ical relations. At �rst, an old Wall Street adage says �It takes Volume to make

prices move�, Karpo¤ (1987) asserts that numerous empirical �ndings support

what is called positive volume-absolute price change correlation (see Crouch (1970),

Clark (1973), Morgan (1976), Wester�eld (1977), Cornell (1981), and Harris (1983),

among others). Figure 2 shows the symmetric correlation between the volume (V )

and the price change (j�pj) in dashed lines. This stylized fact is present in both the

future and equity markets. On the other hand, according to Karpo¤(1987), despite

this positive correlation is almost universally found, some tests indicate that the

correlation is weak. Another familiar adage says that �Volume is relatively heavy in

bull markets and light in bear markets�. In this sense Karpo¤ (1987) remarks that

in equity markets, there is evidence of positive relation between volume and price

change (see Jain and Joh (1986), Rogalski (1978), Morgan (1976), Harris (1986)

among others). One point is that correlation such as the dotted line in Figure 2

has been found only in equity markets. Karpo¤ concludes that what seems to be
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a contradiction maybe explained by an asymmetric volume-price change relation

as shown by the solid asymmetric lines in Figure 2, indicating that the relation is

fundamentally di¤erent for positive and negative price changes. This asymmetric

relation explains the two empirical �ndings reported in the Karpo¤ (1987) surveys.

Relationship between returns and volume. The dotted line represents positive relation,

the dashed line is the symmetric relationship. Finally, the solid line is the asymmetric

relationship propossed by Karpo¤.

Since there is evidence of a relationship between volume trading and price

changes, it seems adequate to consider the two variables in order to construct the

stock market topology, studying the informational e¢ ciency accross the market.

6.3.1 De�ning a bidimensional partition for the Stock Markets The previous

subsection suggested the importance of considering not only price changes but
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also trading volume in �nancial market. This subsection de�nes a simple partition

recovering information carried by volume and price changes.

At �rst, let us consider a kind of gross return for each company i given by the

product between returns and volume trading at moment t: Ri(t) = ri(t):Vi(t):We

construct the empirical distribution f �(Ri) for the series of size T . According to

Molgedey and Ebeling (2000), for statistical reasons one would like to work with

small partitions, obtaining a small alphabet. However, taking only two symbols will

not consider the fact that dynamics can be di¤erent in high negative and positive

returns respect to normal return. For this reason, Molgedey and Ebeling (2000)

suggest a partition with three pieces. Applying the maximum entropy principle,

at �rst three equally probable regions are de�ned selecting two partitions where

empirical density cumulates 1/3 and 2/3 of the distribution. The latter is done in

order to describe the market structure in a normal situation, when analyzing the

market in a extreme situation threshold are de�ned where empirical distribution

cumulates 15% and 85% of the distribution weighting more that distribution tails.

Once the two thresholds have been obtained we go to the space of returns and

volume trading.

Therefore, each pair (returns and volume trading) takes an unique symbol

according to the region they are in, as seen in Figure 6.3. Note that, even when we

de�ne the global returns only in order to obtain the thresholds, the symbolization

is obtained from a bidimensional space where each bidimensional region has 1/3

of the probability.
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Figure 6.3: Symbolization with 3 symbols in a bidimensional space. Normal situation

in full line and critical situation in dashed line.

Once the symbolization is done, we can construct the matrix distance D as

explained in subsection 6.2.2.

6.4 Bidimensional Structure for the Main U.S. Companies

The purpose of this section is to study the informational e¢ ciency across the

U.S. stock market, since it is considered one of the most e¢ cient in the world.

Hence, at �rst we apply the methodology suggested by Mantegna (1999), then we

compute the multidimensional symbolic MSTs and HTs, in a normal and extreme

situation. In the whole study a dataset of companies included in Dow Jones In-

dustrial Average1 is used. The returns are obtained from the stock prices for 30

1 Data is obtained from database available on-line (http://�nance.yahoo.com) and coincides
with the daily data from July 10th, 1986 to January 26th, 2007.
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Figure 6.4: The US MST using the distance based on the Pearson correlation coe¢ cient.

companies composing the Dow Jones Industrial.

6.4.1 The US stock market by using de Pearson Correlation Coe¢ cient The

methodology suggested by Mantegna (1999) was applied in order to compare the

results with those obtained by using the symbolic methodology. Therefore, af-

ter computing the Pearson coe¢ cient correlations and the respective distance,

company-by-company, MST and HT in Figure 6.4 and 6.5 were obtained.

Analyzing the MST and HT we can check that companies working in the

same branch of production tend to clusters. The closest distance is composed

by Verizon (V Z) and AT&T (T ), two telecommunication companies. Note that

there is a clear group of companies working in the informatics sector composed by

Hewlett Packard (HPQ), Intel (INTC), Microsoft (MSFT ), and IBM (IBM).



117

Figure 6.5: The US HT using the distance based on the Pearson correlation coe¤cient.

The �nancial sector also tends to cluster, note that American Express (AXP ),

Citygroup (C), and J P Morgan (JPM) are in the same group. Another group is

composed by pharmaceutical companies such as Pfeizer (PFE), Merck (MRK),

and Johnson & Johnson (JNJ). Two retailer companies also clusters, Home Depot

(HD) and Wal-Mart (WMT ).

Note that MST shows General Electric (GE) as the most linked company, and

Coke as the second most linked. On the other hand, note in the HT that AIG

is the furthest company in the set of 30 companies. The results suggest that the

news a¤ecting a determined sector company are undersood by the companies of

the same branch, in the same way. As �rst approach this is an encouraging result

showing that there are some evidence of e¢ ciency across the market.

6.4.2 The US Stock Market in Normal Situation In this subsection we con-

sider the information from returns and volume trading as suggested in the fourth
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Figure 6.6: MST for the US stock market in a normal situation considering returns and

volume trading.

section. Now, we try to analyze if the market is e¢ cient embodying the new in-

formation provided by the two variables. Figure 6.6 shows the multidimensional

symbolic MST (MSMST) in a normal situation.

Note that it is possible to identify eigth di¤erent groups of companies in the

MSMST. This tree presents General Electric (GE) as the central node, linking

most of the groups. Analysing the groups, at the top left side of the tree, there

are companies working in information and computer technology, IBM, Hewell-
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Packard (HPQ), Microsoft (MSFT ) and Intel (INTC) belong to the same cluster.

There are high complementarity among these industries, and then news make the

companies move in the same direction, in an e¢ cienct market. There is a cluster

formed by retailers services, Wal Mart (WMT ) and Home Depot (HD). Note

that �nancial sector composed by the large �nancial companies American Express

(AXP ), Citigroup (C), and J.P. Morgan (JPM), appears connected by GE (as

is well known, �nance is part of the GE conglomerate). The telecommunication

companies (Telephone, Television, Internet) AT&T (T ) and Verizon (V ) appear

forming another cluster. The companies belonging to this group present the least

distance among them. On the rigth side there is a cluster formed by companies

specialized in aerospace and defense, such as Boeing (BA), United Technology

(UTX), and Honeywell (HON). In the south part of the tree, at left we �nd

a group of hard industry companies. This group is composed by Alcoa (AA),

Du Pont (DD) and Caterpillar (CAT ). The latter could be an example of social

embeddedness as suggested by Halinen and Tornroos (1998). Note that DD has

a director in common with CAT (John T. Dillon), AA (Alain J.P. Delda). These

links are strong considering that James W. Owens is director in AA and CAT .

Then, it is possible that they control the same new information, leading to similar

dynamics between the two companies. In fact, Ahrne (1994) explains that members

of an organization interact with individuals from the same company and from other

companies, creating social networks both inside and between organizations. At

the south and rigth, we �nd the consumption branch composed by Coca Cola Co.
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(KO) well known beverage industry, Procter and Gamble (PG), the important

consumer goods company, and Altria (MO), the cigarettes company. Finally, note

that there is a cluster linked to the latter group. This group is composed by

pharmaceutical companies such as Johnson and Johnson (JNJ), Merck (MRK)

and P�zer (PFE). As we can appreciate, this topology could be a very useful

visual tool in order to identify companies which have presented similar dynamics.

In the present case, the cluster suggests the existence of some kind of e¢ ciency

inside the US stock market. Note that an ine¢ cient market should present few or

no cluster in the tree.

Note that HT (Figure 6.7) spresents similar results. Here we can note that

the telecommunication cluster (T; V Z) as the closest group. Of course, they are

the best interpreting in the same way the arrival of new information. The phar-

maceutical industry (MRK; JNJ; PFE) is the second cluster with the nearest

distance among them. In addition, the �nancial cluster (AXP , C, JPM), the re-

tailers group (HD andWMT ) and the cluster composed by the informatics sector

(HPQ; INTC;MSFT , and IBM) aslo appear.

Note in the HT, that the furthest companies are MMM , AIG, MO, and

XOM , while T and V Z are the closets, hence in a portfolio it is well worth to put

together companies such as T or V Z with one of the former one, like XOM .

6.4.3 The US Stock Market in an Extreme Situation De�ning the thresholds

for extreme situations as in the later section, the MSMST is constructed. Note in

Figure 6.8 that the structure is similar to the latter, in particular GE still appears
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Figure 6.7: The HT in a normal situation for the main US companies.

as the central node and the clusters remain the same. This showns a kind a kind

of stability in the structure of the US stock market in a normal situation but also

in an extreme scenario.

Note in Figure 6.9 that the HT shows the same clusters as in a normal situation,

the same companies are the closest and the same companies are the furthest.

6.4.4 Stability of the MST respect to the partition One question is if the

symbolic MST is sensible to the partition. As we now, when we select a equally

probably partition (1/3 of probability in each bidimensional region) with threshold

at 33.33%-66.66%, and a partition giving 15% to the extremes and 70% in the

middle of the space (thresholds at 15%-85%), the main results do not change. It

means, we obtain the same company as the central node in the market (GE) and the

same eight clusters. We realized a sensibility analysis by changing the partitions

and constructing the MST each time. We de�ned 9 di¤erent partitions presenting
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Figure 6.8: MST for the US stock market in a extreme situation considering returns

and volume trading.
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Figure 6.9: The HT for the main US Companies in an extreme situation.

thresholds at: 5%-95%, 10%-90%, 15%-85%, 20%-80%, 25%-75%, 30%-70%, 35%-

65%, 40%-60%, and 45%-55%. For all these cases the fundamental structure does

not change, GE remains as the central node and the eight clusters are present in

the tree.

A second question is whether our measure is signi�cative or the links in the

MMST are random. To study this we realized 1,000 Monte Carlo simulations for

30 random companies for a period T=5,184 days (which is the size of our dataset).

Then, we compute 1,000 random MST, obtaining the simulated distribution of the

distances (or links) belonging to the MST. We de�ne the con�dence intervals at

5% and 95% where a random link should enter in, for a sample sized T=5,184 with

30 companies (29 links). The results are shown in Table 1, note that if we have the

smallest distance between 80.76 and 81.57 we cannot reject the hypothesis that
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this link is random, note also that for the link 29, the interval is 81.98 and 82.32.

Table 1: Con�dence Intervals at 5% and 95% for random links

Links (5%� 95%) Links (5%� 95%) Links (5%� 95%)

link 1 (80:76� 81:57) link 11 (81:67� 82:05) link 21 (81:96� 82:29)

link 2 (81:08� 81:68) link 12 (81:70� 82:08) link 22 (81:98� 82:32)

link 3 (81:25� 81:76) link 13 (81:73� 82:11) link 23 (82:01� 82:34)

link 4 (81:35� 81:82) link 14 (81:76� 82:13) link 24 (82:05� 82:38)

link 5 (81:41� 81:86) link 15 (81:79� 82:14) link 25 (82:08� 82:43)

link 6 (81:47� 81:90) link 16 (81:82� 82:17) link 26 (82:12� 82:43)

link 7 (81:52� 81:95) link 17 (81:85� 82:19) link 27 (82:16� 82:56)

link 8 (81:56� 81:97) link 18 (81:87� 82:22) link 28 (82:21� 82:66)

link 9 (81:60� 82:01) link 19 (81:90� 82:24) link 29 (82:31� 82:85)

link 10 (81:64� 82:03) link 20 (81:93� 82:26)

Based on the 1,000 random simulations of 30 random companies for 5,184 days

However, our tree is far from the random intervals showing the high signi�cance

of the links (see Table 2). Note, that the smallest distance is d(V Z; T )=60.83 and

the link 29 is the distance d(AIG;UTX)=80.22.
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Table 2: Links of the Main US companies in the MST

Link Firms Dist. Link Firms Dist. Links Firms Dist.

1 VZ-T 60:83 11 PG-KO 65:71 21 AA-DD 68:67

2 MRK-PFE 62:32 12 WMT-GE 66:16 22 CAT-DD 69:06

3 INTC-MSFT 62:38 13 INTC-IBM 66:30 23 BA-UTX 69:06

4 C-JPM 62:61 14 MMM-DD 66:41 24 GE-MCD 69:43

5 MRK-JNJ 62:89 15 GE-KO 67:01 25 GM-GE 69:43

6 C-AXP 64:16 16 PG-JNJ 67:38 26 XOM-DD 70:06

7 HD-WMT 64:40 17 HON-UTX 67:41 27 VZ-GE 70:40

8 C-GE 65:16 18 DIS-GE 67:75 28 PG-MO 70:89

9 INTC-HPQ 65:25 19 UTX-GE 67:87 29 AIG-UTX 80:22

10 MMM-GE 65:33 20 GE-IBM 68:60

Based on the obtained results for a partition at 1/3 and 2/3

6.4.5 Total Tree length and Survival Ratio We mention in subsection 6.2.4

that two important measures are the total tree length and the survival ratio. The

former is calculated by summing up the weights on all edges and is a measure of

concentration and expansion of the structure. The latter measures the robustness

of dynamic asset trees, examining the short term persistence or survival of edge

connections between two consecutive frames. To compute the Survival Ratio the

total period is divided in two subperiods of 2592 days. Computing the respective

MSTs and HTs, it is observed that the total tree length goes from 27.5886 to

39.5364 in the second period. It means that the US stock market expanded 43.31%
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between the two periods, according to Onnela (2002) this is a sign that the market

decreased its risk.

According to the single-step survival ratio 41.38% of the connections survived

between the periods in the MST. The HT shows that clusters such as Telecommu-

nication (T and V Z), Pharmaceutical (PFE, JNJ and MRK), Retailers (HD

andWMT ), Informatics (HPQ, INTC,MSFT , and IBM), and Financial sector

(JPM , C, AXP ) survive between the two periods. Even more, the closest com-

panies are V Z and T: On the other hand, the furthest �rms are MMM , XOM ,

AIG andMO, con�rming that a portfolio could be composed by one of the former

companies with the one of the latter.

6.4.6 Further analysis: Cointegration and Granger Causality between GE and

AIG Another question which rises from the results is what the reason for GE

to take a central position in the tree is? One hypothesis could be that the largest

companies leads the movements of the other �rms. Therefore, we collected three

proxies for the size of our companies (number of employees, market capitalization

and total revenues). Note in Table 2 that GE ranks the 2nd according the Market

Capitalization, 3rd according the number of employees and 4th if we consider the

total revenues. However, note that Exxon is the largest company in the group but

it does not take the central position.

We also applied econometric methods in order to study the relation among the

companies. In particular, we apply a Vector Autorregressive Model (VAR) for the

30 variables and applied the Granger causality test in order to study the prece-
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dence of one variable respect to the other. In order to select the best lag length we

apply the minimum AIC (Akaike Information Criterio), one length was selected.

Some empirical results were found, when we applied the Granger causality test, GE

caused 12 variables (AIG;AXP;BA;C;CAT;DIS;GM;HD;HON;MCD;MMM;UTX),

there was a bidirectional causality between PFE andGE and four variables caused

GE (WMT; JPM;MO;MRK). Note again, the importance of GE preceding the

movement of 40% of the largest companies. On the other hand, I discovered that

the movement of AIG, one of the furthest companies in the trees was caused by

all the companies. This result suggests that we could forecast its movement by

knowing the movement of the other companies the day before. To study this idea

I conduct an econometric analysis between GE and AIG using the cointegration

technique propossed by Johansen (1995). We use the log of the respective prices

from 7 september 1984 to 31 December 2007.

We estimate a VAR with 5 lags (according to the minimum AIC) and test the

cointegration relationship. Table 3 indicates that 1 co-integrating relationship is

obtained.

Table 3: Johansen Cointegration Test
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Hypothesis Trace Statistic C.V. at 0.05 p-value

None* 23.70 15.49 0.002

At most 1 2.32 3.84 0.127

Hypothesis Max-Eigen Statistic C.V. at 0.05 p-value

None* 21.38 14.26 0.003

At most 1 2.32 3.84 0.127

Source: Own calculations. * Indicates rejection of the null hypothesis at 5%

To do inference we need to conduct the weakly exogeneity on AIG. The

Chi2 statistic is 1.503 producing a p-value of 0.22; therefore we cannot reject the

hypothesis that the price of AIG is exogenous to the model. The following equation

shows the long-run estimated relationship.

AIG(t) = 0:884 + 0:94GE(t)

::::::::::::::::[�41:78]

Cointegration by itself does not indicate the direction of the causal relationship.

Granger (1988) proposed a test to study causality. However, this is not causality

in a philosophical sense. It should be understood as a kind of predetermination

among variables.

The dynamic Granger causality can be captured from the VAR model. How-

ever, since the variables are integrated, application of the standard Granger causal-

ity test is invalid. Toda and Yamamoto (1995) suggest an alternative procedure.

When the variables are integrated, they propose to estimate a VAR model with

(k+dmax) lags, where k is the standard optimal number of lags and dmax is the
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maximal order of integration that we suspect might occur in the process. Once

the VAR is estimated, we test Granger causality only using the �rst k lags. For

instance, if we consider the following equation from a VAR model:

AIG(t) = 0+1GE(t�1)+:::+6GE(t�6)+7AIG(t�1)+:::+12AIG(t�6)+�(t)

where k = 5 was selected according the minimum AIC and dmax = 1, the null

hypothesis of non-causality from GE to AIG should be:

H0 : 1 = 2 = 3 = 4 = 5 = 0

It means,

H0 : GE does not Granger-cause AIG

The hypothesis is tested using the Wald test. However, Toda and Yamamoto

(1995) assert that Wald and LR tests are asymptotically equivalent in the present

situation. Table 4 shows the results for all the variables.

Table 4: Granger Causality Test (by Toda & Yamamoto)

Null Hypothesis Wald-statistic p-value

GE does not cause AIG 14.95 0.0106*

AIG does not cause GE 6.93 0.2262

We used a VAR with k+dmax = 5+1. p-values correspond to

the Chi-square distribution with 1 degree of freedom.

* indicates rejection of the hypothesis at 5%
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Notice that we reject the �rst hypothesis but not the second. Therefore, GE

causes the movement of AIG.

6.5 Bidimensional Structure for the Main Italian Companies

The Milan Stock Exchange (MSE) concentrates more than 90 percent of the

transaction volume of the Italian stock market. It was founded in 1808, priva-

tized in 1997 and acquired by the London Stock Exchange Group in 2007. The

most important index is the S&P/Mib, embodying the highest capitalized com-

panies (more than 1000 million euros). An important characteristic is that the

30% of these companies work in the �nancial sector (insurance and bank �rms)

representing the 48% of the market capitalization.

Few papers have studied the Italian Stock market. We can refer to Barone

(1990) analyzing the e¢ ciency and the anomalies in this market, Michaely and

Murgia (1995), studying the e¤ects of tax heterogeneity on price and volume in the

MSE and Brida and Risso (2007) studying the structure of the market considering

the asset returns.

It is well known that Italian market is basically characterized by the prevalence

of small and medium-sized companies with a small number of large companies due

to increased concentration. This section is an extension of the unidimensional sym-

bolic approach introduced in Brida and Risso (2007). The data from the S&P/Mib

is used, collecting data of trading volume and asset returns for 32 companies2.

2 Daily data (from December 7th, 2001 to September 12th, 2007) was obtained from database
available on-line (http://�nance.yahoo.com).



132

Figure 6.10: MST in a normal situation for the Italian market considering trading

volume and asset returns.

6.5.1 The Italian Stock Market in a Normal Situation From the matrix of

distances D a ranking of distances is considered from the closest to the furthest.

Therefore the MST is constructed by connecting the most relevant distances. The

MST obtained for the Italian case is shown in Figure 6.10.

Note that companies working in the same branch tend to form groups of clus-

ters. Therefore, we obtain some evidence of e¢ ciency across the market. In the

north section of the tree it is possible to identify a cluster of companies working in

the sector of energy, AEM working in liquid gas, SRG;ENEL;ENI and SPM
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Figure 6.11: HT for the Italian Stock Market in a normal situation

working in Gas and Electricity. The center of the tree is composed by compa-

nies working in Banks and Insurance, actually Mediolanum (MED) and Generali

(G) have a central position with more connections than the other companies. At

the left we have a cluster composed by luxury �rms (Luxottica and Bulgari) is

found and a group of Telecommunication formed by Fastweb (FWB) and STMi-

croelectronics (STM) also appears. At the we have the media sector is identi�ed

composed by Mediaset (MS), L�Espresso (ES) and Mondadori (MN). Finally, at

the south three groups appear, one formed by two companies working in cement,

Buzzi Unicem (BZU) and Italcementi (IT ). Note that Unicredit (UC) and Intesa-

San Paolo (ISP ) have a close distance, they are the main banks in Italy. A third

group composed by Telecom (TIT ) and Pirelli (PC) can also be identi�ed, as it is

well known, Pirelli is the major shareholder of the Olimpia group, and this group

is the principal shareholder of Telecom.

Figure 6.11 shows the existence of three clusters: 1) composed by Generali (G)
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and Mediolanum (MED) two insurance companies having the central position in

the tree, but also Unicredit (UC) and Intesa San Paolo (ISP ), the most important

banks. Note that also STMicroelectronic (STM) is included. This is the group at

left with the closet distances; 2) a second group is formed by L�Espresso (ES) and

Mediaset (MS) both working in the media sector; 3) ENEL, ENI and Saipem

(SPM) form a group working in energy sector, note the close distance between

ENI and SPM. Actually, they have a strong relationship, SPM (plant design and

installation) was part of ENI (Petroil subsector) until 1969, government has the

42.9% of the shares of the �rst and 20,32% of the second; 4) The group formed by

cement companies includes Buzzi Unicem (BZU) and Italcemento (IT ).

6.5.2 The Italian Stock Market in an Extreme Situation In �gure 6.12 we

have constructed the MST for the extreme situation. Note that the fundamental

structure of the tree remains and this can be interpreted as some kind of stability of

the tree from the normal to the extreme situation. Basic groups remain, �nancial

sector (Banks and insurance companies) are the center of the tree with especial

focus on Generali (G) and Mediolanum (MED).

Figure 6.13 shows the HT in the extreme situation. Note that a cluster com-

posed by Pirelli (PC) and (TIT ) Telecom is highlighted and this could re�ect the

problem about the decision of selling part of the shares of Telecom which happened

in the analyzed period.

6.5.3 Total Tree length and Survival Ratio As in the US market, we proceed

to compute the total tree length and the survival ratio. At �rst, the period T is
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Figure 6.12: MST in an extreme situation for the Italian Stock Market

Figure 6.13: HT in extreme situation for the Italian Market
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divided in 2 sub-periods of 746 days. The respective MSTs and HTs are computed

and the di¤erences are studied. It is observed that the total tree length goes from

27.3589 to 28.5724 in the second period, it means that the Italian market expanded

4.44% between the two periods, according to Onnela (2002) this is a sign that the

market decreased its risk.

According to the single-step survival ratio only 26% of the single connections

survived between the periods. However, the clusters seem to be more stable than

the particular single connections. The HT shows that Generali and Alleanza are

in the group of the 4 closest companies between the two periods, whereas Alitalia

is among the 4 furthest companies between the two periods.

Figure 6.14 shows the total tree length for time-windows of 120, 240, and 480

days. Note that the Market shows a larger expansion through the time.

6.6 Conclusions

This Chapter aimed to analyze the informational e¢ ciency across a determined

market. In order to study this kind of e¢ ciency a methodology was developed. In

fact, minimal spanning tree and hierarchical tree introduced by Mantegna (1999)

was modi�ed. We introduced a multidimensional symbolic method which gives

more �exibility, on the one hand, it permits to analyze more than one variable,

on the other hand, it permits to study di¤erent scenarios. The method basically

detect the formation of clusters in the market which have similar behavior. We

interpret the formation of clusters as evidence of e¢ ciency inside a market. In fact,

a cluster represents a group of companies reacting at the same time, in the same
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Figure 6.14: Evolution of the Total Tree Length for di¤erent time-windows. (a) 120

days, (b) 240 days, (c) 480 days.
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way to the new information arriving in the market. An ine¢ cient market should

present no clusters, since all the companies would react in di¤erent manners to the

news.

We applied a bidimensional methodology (considering not only asset returns

but also trading volume, since they provide important information as suggested by

Karpo¤ (1987)) to the US market and the Italian market, in order to see if they

can be considered as e¢ cient markets. In both cases we detected the formation of

clusters which make sense from an economic point of view, companies working in

the same branch tend to cluster.

The US companies present a structure which makes sense from an economic

point of view, showing eight di¤erent clusters of �rms working in the same branch.

Interesting thing is that both in normal and extreme situation the US structure

does not change. We always �nd eight clusters where GE takes a central position

in the tree. The structure is also stable, in particular it does not change when

we de�ne di¤erent partitions. When we divide the period in two and computing

the total tree length, it goes from 27.5886 to 39.5364 in the second period, while

the survival ratio shows that the 43,41% of the connections survive. However,

the clusters are stables, note that T and V Z are the closest companies whereas

MMM;XOM;AIG and MO are the furthest, this is important for the construc-

tion of a portfolio where maybe is logical to put companies such as T and MO

together. We studied if the central position of GE was due to the fact that is a

Hugh company, however, the largest company is Exxon-Mobile taking a not im-
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portant position. In addition, we discover that the prices of the furthest company

(AIG) seem to be caused by the other companies, in particular a long run relation-

ship is obtained between GE and AIG. The results show that knowing the returns

of GE the day before helps predicting the price of AIG the next day.

The Italian stock market also presents a structure with economic meaning.

However, the structure does not signi�cantly change from a normal situation to

the extreme situation, it means that in a critical situation the links among the

companies remain the same. Financial companies take a central position in the

structure, where Generali and Mediolanum are the most connected companies.

When dividing the total period in two parts the single connections seem to change

but the group are stable, companies such as Generali and Alleanza are the closest

whereas Alitalia is one of the furthest companies. When considering two variables,

the evolution of the total tree length suggests that the market has evolved to a

more expansive position, as in the US case.

The results suggest that there is some evidence of informational e¢ ciency

across the US and Italian markets. It also suggests that the links among the

companies are not so strong. However, the clusters seem to be stable. Further

results show that both market have tended to a more expansive situation and then

less risky, according to Onnela (2002).
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